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Preface 
 

There are many valid analytic methods for correlating potential technical or other program 
characteristics with cost.  Analysts may find certain methods more suited to specific or niche 
applications than others – or have understandable preferences for particular methods. However, 
we recognized an overarching need within the Government cost analysis community to provide a 
handbook to serve as a fundamental reference for parametric Cost Estimating Relationship 
(CER) development. This handbook provides a variety of statistical techniques to help equip the 
analysts' toolboxes for attacking a range of estimating problems and data issues. Additionally, it 
presents tried-and-true processes to help analysts choose the appropriate method, understand the 
mathematics behind several of the available regression and curve-fitting techniques, validate and 
select the most representative CER, and properly document their efforts.   
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INTRODUCTION 
Cost estimators forecast the amount of resources, time, and effort it takes to implement and execute 
requirements defined to support the needs of the user and functional communities.  To meet the 
forecasting needs, the cost estimator draws heavily from historical data to develop cost estimates that: 

• are relevant, defendable and objective; 
• facilitate what-if analysis; 
• support the identification of cost drivers; and 
• provide the basis for assessing the risk and uncertainty associated with the estimate 

A primary cost estimating method is to use historical data to develop parametric cost estimating 
relationships (CERs) through regression analysis. Regression analysis is a statistical process for 
estimating the relationships between a dependent variable (the element estimated) and one or more 
independent variables (variables that influence cost). Parametric cost estimating models are used 
throughout the life cycle, but are particularly useful tools for preparing early conceptual estimates when 
there is little technical detail. They are also useful for quickly examining the cost impacts of a range of 
alternative options. While this handbook uses cost estimating examples to demonstrate the regression 
process, the guidance is equally relevant for estimating duration (schedule), labor hours, a technical 
characteristic or any other item of interest. 
There are many valid ways to approach, perform, and use regression analysis. The main process flow 
focuses on the actions taken to develop and validate the CER, and the rationale for doing so, and provides 
examples when possible. The goal of this document is to provide the cost analyst: 

• guidance on how to collect and prepare data for the regression process 
• a comprehensive resource describing the most widely used regression methods in our industry 
• reasons to employ a given regression method and guidance on how to apply the selected method 
• an objective basis for selecting the CER to be used in the cost estimate 
• a demonstration on how to fully document the selected CER 

The CER development process begins by fully defining the purpose of the estimate. The cost analyst must 
then perform the necessary literature search and consult with stakeholders, program office authorities, and 
technical experts to develop the ground rules, constraints, assumptions, boundaries, and a full description 
of the item to estimate.  

Figure 1 shows the six basic steps of the CER development process. Analysts rarely perform this process 
in a linear manner. The dotted lines illustrate the most common iterative steps in the process, for instance: 

• 2 back to 1: Unable to identify any meaningful drivers 
• 3 back to 2: Desired regression method fails to converge 
• 4 back to 3: CER fails to validate, investigate other regression methods 
• 4 back to 2: CER fails to validate, no other regression methods to try, look for other drivers 
• 5 back to 3: Uncertainty assessed to be unacceptable (too large or too narrow, often a subjective 

assessment) 
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Figure 1: CER Development Process 

The CER development process is iterative and equally valid for estimating cost, duration (schedule), 
labor hours, technical or any other quantitative aspect of a well-defined project. 

*The final step should be completion of the documentation, since documentation should be completed 
at each step.  

 
 

  

* 
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HOW TO USE THIS HANDBOOK 
This handbook provides a summary of the processes, mathematics and guidance for the development of 
CERs using regression analysis. The handbook functions more as an electronic resource than as a 
comprehensive textbook, enabling the reader to navigate through hyperlinks instead of leafing through 
physical pages.  

The material in this handbook helps the analyst choose the appropriate regression method, understand the 
mathematics behind several of the most popular regression methods, validate and select the best CER, 
establish the range around the CER result and document the entire process. 

Throughout the handbook, there are flow charts that detail the process flow at each stage. In addition, 
there are files that complement the handbook. The complete set of files includes: 

• 1. CER Handbook: This handbook published as a Portable Document Format (PDF) file. 
• 2. CER Handbook Examples: MS Excel file containing Figures and Tables in this handbook. 
• 3. CER Handbook Documentation: MS Excel file containing the Calculations, Figures and 

Tables used in Step 6: Document CER. 
• 4. CER Handbook StatSoftwareMatrix: MS Excel file comparing the features of the following 

software products that support statistical analyses in CER development:  
o MS Excel: Contains several statistical functions and a data analysis add-in 
o CO$TAT: An MS Excel add-in developed to support cost statistical analysis 
o Minitab: Comprehensive statistical package 
o R: Public domain tool delivering a programing language for statistical computing 
o SAS: Statistical Analysis System, advanced analytics 
o JMP1: Developed by SAS to provide a simpler user interface for advanced data analysis 

with large datasets 
o STATA: Statistics and Data, data analysis and statistical software. 

• 5. ZIP File Containing CER Handbook Flow Charts: Several Visio files with the flowcharts 
used in this handbook, including a file that contains the complete process. 

The CER Handbook is not a substitute for textbooks and papers, some of which are listed in Appendix E 
PARTIAL References nor does it serve as an alternative to formal cost analysis training.  

                                                      

1 Pronounced “jump”, the name was derived from its inventor “John’s Macintosh Project.” 
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1.0 STEP 1: PURPOSE, SCOPE, COLLECT, VALIDATE, & NORMALIZE 
DATA 

 Introduction 1.1
The purpose of the estimate drives the scope and approach. The estimator needs to build a structure of 
Work Breakdown Structure (WBS) elements that will provide the required insight into the cost of the 
program. The program elements are populated with methodologies that will best support the estimate 
purpose and any anticipated what-if analysis.  

To estimate each WBS element, four general methodologies are available: analogy, factor, parametric, 
and engineering build-up. This guide focuses on parametric (i.e., CERs), which uses statistical techniques 
to form an equation showing the relationship between dependent ( cost and schedule), and associated 
independent variables (technical, programmatic, etc.).  

Regardless which methodology is used, the analyst needs to understand the underlying factors that drive 
the cost and schedule for the individual program elements, as this drives how the analyst will model the 
costs for these elements. This knowledge comes from training, experience, and extensive discussions with 
those who have management or engineering experience with similar programs. Analysts should develop, 
maintain, and modify as necessary a working hypothesis of the underlying set of drivers for each element 
of cost and schedule. This hypothesis drives data collection, and in the case of CERs, the functional form 
of the CER. Influence diagrams are useful tools for developing a set of underlying relationships. 

 Preparing to Collect Data 1.2
Historical data are needed to support a robust cost estimating research. The main data types to be 
collected include: 

• Cost: Recurring and Non-recurring, and further subdivided into categories such as labor, 
material, overhead and fee are some examples of cost. 

• Programmatic: Total quantities, quantity profiles, contract type, sole source or competitive, 
quantities, production rate requirement, initial operation dates and maintenance concept are some 
examples of programmatic.  

• Performance and Technical: Speed, range, depth, survivability, noise reduction are some 
examples of performance data.    Weight, frequency, power, volume, and density are some 
examples of technical data. 

• Schedule: Hours, months, and years are some examples of schedule data. 

There is a substantial amount of effort required prior to beginning the actual data collection process. The 
analyst must clearly define the purpose and project description (scope). From this information, the analyst 
can hypothesize plausible functional forms (i.e., linear, exponential, etc.) and potential cost drivers. 
Validated data from a variety of different projects performed at different times and under different 
circumstances must be normalized, that is, rendered consistent with and comparable to each other. This 
section addresses each of these steps. 
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 Cost Estimate Purpose and Scope 1.3
1.3.1 Cost Estimate Purpose 
Potential uses for a cost estimate include: 

• Compare the benefit of a particular project relative to its cost 
• Investigate the cost impact of alternative ways to satisfy requirements 
• Determine if building a new item is more cost effective than buying the item  
• How to shape a solution to fit into a specific cost (cost as an independent variable) 
• Support for a milestone review 
• How to allocate funds across a variety of project elements 
• Assess the impact of the timing of when work is performed 
• Independent assessment of a cost estimate 
• Basis for a budget request 
• Support contract negotiations 

The analyst also needs to understand the nature of the alternatives to be investigated to determine the 
level at which the data are needed. The data will dictate the level at which the model can generate costs. 
The purpose of the estimate drives the scope of the estimate.  

Defining the estimate purpose is the foundation for determining the estimate scope and the basis for 
how to construct the model. 

1.3.2 Cost Estimate Scope and Work Breakdown Structure 
The cost estimate scope identifies the bounds of the estimate. The analyst needs to approach every 
estimate with a clear understanding of the estimate scope, assumptions and ground rules.  

To gain an understanding of program scope, analysts typically refer to the program baseline or other 
programmatic documentation. The definition and content of a program baseline vary from organization to 
organization. In generic terms, most program baseline descriptions include2: 

• Program’s purpose and its system and performance characteristics and all system configurations 
• Any technology implications 
• Its program acquisition schedule and acquisition strategy 
• Its relationship to other existing systems, including predecessor or similar legacy systems 
• System quantities for development, test, and production 
• Deployment and maintenance plans  
• Support (manpower, training, etc.), security needs and risk items 

Examples of program baseline descriptions include the NASA Cost Analysis Data Requirement 
(CADRe)3 and Department of Defense (DoD) Cost Analysis Requirements Description (CARD).  

                                                      

2 These are from Chapter 7 of the Government Accountability Office (GAO) Cost Estimating and Assessment Guide 
(GAO-09-3SP), March 2009 
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CADRe is a three-part document that describes a NASA project at each milestone, contains key technical 
parameters, and captures the estimated and actual costs in a WBS structure. NASA’s CADRe system 
provides historical record of cost, schedule, and technical project attributes so that estimators can better 
estimate future analogous projects. The final CADRe containing actual costs rather than estimates is the 
best source. 

The CARD 4 succinctly describes the program baseline. This includes the key technical, programmatic, 
operational, and sustainment characteristics of a program, along with supporting data sources, and 
provides all of the program information necessary to develop a cost estimate. Use of the CARD enables 
different organizations preparing cost estimates to develop their estimates based on the same definition of 
the program requirements. As a program evolves and its costs and funding needs change, the CARD, as a 
living document, evolves with it. If a CARD does not exist, is incomplete, or is not current, the analyst 
must work with the program office to develop something that provides the proper foundation for the 
estimate.  

A well-defined WBS should be part of the program baseline documentation. A WBS contains three pieces 
of information: WBS Number, WBS Element (name), and WBS Definition. The WBS ensures that all 
components of the system are addressed with no inadvertent omissions of subsystems or functions. The 
appropriate WBS structure and respective data collection effort varies depending on the life-cycle phase: 
Development, Production, Operating and Support (O&S), or System Disposal. For defense Development 
and Production contracts, MIL-STD-881C5 (or the most current version) is the authoritative guidance 
document. The Cost Assessment and Program Evaluation (CAPE) O&S Cost Estimating Guide6 is the 
authoritative source for O&S Cost Element Structure (CES).  

CERs are often developed at lower levels than the WBS structures defined in MIL-STD-881C or the CES 
structures defined in the CAPE O&S Cost Estimating Guide7. These details are usually found in the 
program baseline or other program documentation. They are critical pieces of information to provide the 
analyst context for the CER under development. In particular, the cost analyst should examine the 
WBS/CES to determine if other elements in the WBS/CES may influence the element(s) they are 
estimating. For example, items produced during Development may be manufactured on the same 
production line used for Production. Additionally, the project WBS/CES structure is a key consideration 
for selecting (and adjusting) analogous historical projects to use as the basis for estimating the new item.  

A well-defined WBS/CES describes the project scope and is a key consideration for selecting (and 
adjusting) analogous systems. 

                                                                                                                                                                           

3 https://www.nasa.gov/offices/ocfo/functions/models_tools/CADRe_ONCE.html  
4 For more detail on the CARD, see the Cost Assessment Data Enterprise (CADE) public website. 
http://cade.osd.mil/policy/card 
5 “Work Breakdown Structures for Defense Materiel Items,” MIL-STD-881C, 3 October, 2011. 
6 “Operating and Support Cost-Estimating Guide,” Office of the Secretary of Defense (OSD) Cost Assessment and 
Program Evaluation (CAPE), March 2014. 
7 An O&S WBS is planned for the next version of MIL-STD-881, currently under development. 

https://www.nasa.gov/offices/ocfo/functions/models_tools/CADRe_ONCE.html


 CER Development Handbook 
 

17 

1.3.3 Obtain Subject Matter Expert Guidance to Help Identify Potential Cost Drivers 
Figure 2 illustrates how the user requirement becomes a cost estimate of alternatives (4.0) or a budget 
cost estimate (6.0). Along the way, operators, engineers and program subject matter experts (SMEs) 
construct the necessary documentation to identify performance specification, design alternatives, and the 
final system configuration. Apart from identifying the program baseline and assembling other program 
documentation, the SMEs provide valuable insight and context for the performance, technical and 
programmatic factors that may drive cost.  

Rarely is the process in Figure 2 performed in a linear manner. The dotted lines illustrate common 
iterative steps, for instance: 

• 2 back to 1: Unable to define performance parameters that meet the user needs  
• 3 back to 2: Unable to specify an alternative that will meet the performance requirements 
• 4 back to 3: Cost for all alternatives are unacceptable 
• 5 back to 3: Unable to convert an alternative into a detailed specification 
• 6 back to 5: Product configuration must change to meet budget constraint 

 

Figure 2: User Requirement Translated to Cost 

The analyst is now ready to develop an initial hypothesis.  

The program baseline, WBS/CES, and SME insights provide a basis for hypothesizing how to estimate 
a WBS/CES element. 

The hypothesis can begin with development of an influence diagram. In the context of regression 
analysis, an influence diagram is a compact graphical representation of potential variables and how they 
may influence cost. The diagram also helps visualize how the variables may interact with each other. 
Figure 3 provides a simplified example of an influence diagram illustrating some of the variable 
information gathered in support of the electronics example estimate. A thick black arrow indicates a 
hypothesized positive correlation between a variable that may influence cost and the cost element. That is, 
there is an expectation that as the variable increases in magnitude, the item cost will increase as well. The 
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dashed (green) arrows denote presumed negative correlation. Technology Readiness Assessment (TRA)8 
is an example of possible negative correlation. The greater the assessment number, the more mature the 
technology, leading to a more confident estimate (not necessarily lower cost, but probably lower risk).  

The influence diagram will often include categorical variables. In the context of cost regression analysis, 
categorical variables take on one of a limited, and usually fixed, number of possible values. In Figure 3, 
several categorical examples are illustrated. See 3.2.3 Dummy Variables for guidance on how to employ 
categorical variables in a regression analysis. See Appendix A.5 Influence Diagram for another example 
of an Influence Diagram. 

 
Figure 3: Simplified Influence Diagram Example  

A thorough understanding of the estimate purpose, scope, WBS/CES, and operational/engineering 
insight is the basis for hypothesizing variables that influence the cost of interest. 

1.3.4 Define Viable Hypothesis 
Analysts are recommended to formally define a hypothesis and function form that relates the independent 
and dependent variable(s). Whether or not formally defined, recognize from a logical perspective, all 
CERs implicitly assume a hypothesized relationship between the dependent and independent variables. 
For example, we may hypothesize a linear relationship between cost (y) and system output power (x): 
𝑦 = 𝑎𝑎 + 𝑏 or a non-linear relationship: 𝑦 = 𝑎𝑎^𝑏. 

                                                      

8 Technology Readiness Assessment (TRA) Guidance, April 2011 (revision posted 13 May 2011), Assistant 
Secretary of Defense for Research and Engineering (ASD(R&E)). Also known as Technology Readiness Level as 
defined by NASA in: Technology Readiness Levels, 5 April 1995, Advanced Concepts Offices, NASA 
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This hypothesis will serve as the starting point for the CER data collection process and supporting 
analysis. At the conclusion of this process, the resulting CER must make sense from a technical 
perspective.  

Working with SMEs not only helps identify potential cost drivers, but also helps with hypothesizing the 
shape of the relationship (does the driver move with or counter to cost, is the rate of change constant, are 
there logical thresholds, etc.). The goal of this step is to prioritize the data to be collected prior to 
searching for sources of data. If more extensive data are readily available than required by the hypothesis, 
it should be collected as well, as this may provide insights necessary for resolving problems later, and 
may lead the analyst to recast their hypothesis. 

Many tools can search through mountains of data to identify similar relationships to test for statistical 
significance. While there is a place for such tools, effective and efficient cost analysis relies on serious 
thought about cost-to-cost driver relationships that reflect the underlying engineering, operational, and 
programmatic relationships. This is even more important given the limited sample sizes and the noisiness 
of cost data. A CER showing that total fuel consumption decreases as hours of flight increases does not 
make sense and may require additional analysis to confirm CER realism. Analysts are encouraged to form 
one or more hypotheses based on what they expect should work and to proceed through the data 
collection and regression challenges with the hypothesis in mind. 

The resulting hypotheses should guide the data collection process. 

 Sources of Data 1.4
At this point, we should have a good idea how to identify analogous historical programs and the data to 
be collected. 1.2 Preparing to Collect Data introduced the type of data to be collected: cost, programmatic, 
performance, technical and schedule. A broader breakdown of data types includes: 

• Quantitative: historical data on cost, programmatic, performance, technical and schedule 
• Qualitative: often subjective in nature and often provided by SMEs 
• Primary data: data collected from an original source 

o The contractor is a major source of primary data  
o The test center is the source of primary data on flight and weapons testing 
o Depots are the source for data on overhauls, shop replaceable units (SRUs), 

modifications, etc. 
• Secondary data: data collected from a source other than the original data source 

o Documented cost estimates, factors books, studies, audit reports, and industry standards 
are examples of secondary data. 
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The program baseline (introduced in 1.3.2 Cost Estimate Scope and Work Breakdown Structure) 
describes what we must estimate. Table 1 provides a list of generic primary and secondary data sources9 
to consider when searching for historical program data. 

Table 1: Generic Primary and Secondary Data Sources 

 

Before data collection starts, the cost analyst should identify what data source is authoritative for each 
data field and why. During data collection, analysts often find that multiple data sources yield conflicting 
data, and the analyst needs a paradigm to resolve these conflicts and prioritize data collection efforts. The 
best data sources are traceable without alteration to primary data sources. 
For DoD analysts, there is a variety of data sources. The Cost Assessment Data Enterprise10 (CADE) is a 
DoD initiative to collect, organize and display program cost, programmatic, technical and schedule data 
in an integrated single web-based application. CADE provides the government analyst an authoritative 
source for Cost and Software Data Reports (CSDR), Earned Value Management (EVM) data, and 
Visibility And Management of Operating and Support Costs (VAMOSC) to support the cost estimating 
process.  
Program offices maintain a variety of other documents which may provide useful data, to include : 

• Initial Capabilities Document (ICD) and Capability Development Document (CDD) 
• Acquisition Plan (AP) / Acquisition Strategy (AS) 
• Deployment Plan 
• Software Requirement Specification (SRS)  
• Life Cycle Sustainment Plan (LCSP) 

                                                      

9 Table 10 from Government Accountability Office (GAO) Cost Estimating and Assessment Guide (GAO-09-3SP), 
March 2009 
10 http://cade.osd.mil/  
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• Test and Evaluation Master Plan (TEMP) 
• Integrated Logistics Support Plan (ILSP) 
• Integrated Master Plan / Schedule (IMP/IMS) 
• Contracts and Proposals 
• Program and Milestone Review Briefings 

The analyst should talk to other experienced analysts to determine if other data sources may be available 
to support the CER development process.  
 

There are many potential sources of data. The handbook provides generic sources. The agencies 
charged with performing cost estimates should identify the sources of authoritative data. 

 Collect and Validate the Raw Data 1.5
Raw data are unaltered records from primary or secondary sources. At this point in the process, the goal is 
to capture all of the information (data, context, documentation, etc.) required. Figure 4, an electronic data 
set, illustrates raw data collected from a variety of different projects with different content and arranged in 
different formats. Raw data drawn from these disparate formats should be organized into a common 
format.  By organizing the data using a consistent format, detecting missing data becomes easier. Before 
this information can be subjected to any statistical analysis, the data must be organized, consolidated, and 
normalized.  
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Figure 4: Consolidate Raw Cost Data into a Summary Table 

Documenting all relevant information is important to understand the context of observations. Table 2 
shows an example of technical, categorical, and programmatic data from Figure 4. 

Table 2: Integrated Technical and Programmatic Data  

 

Figure 4 and Table 2 are simplified examples demonstrating key steps in CER development. Individual 
agency policy and guidelines define the format, content, and tools used to collect and document raw data.  
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Organizing raw data using a consistent format will make it easier to identify gaps. 

 Cost Data Normalization 1.6
The process of normalization reduces the noise in the data. The following sections discuss the most 
common normalization procedures in support of a cost estimate. 
The goal of data normalization is to ensure data are comparable in content across the observations. The 
observations should capture “noise” that represents different technical, schedule, management, contractor, 
risk, policy, and related challenges. The goal is not to remove all scatter from the data. The goal is to have 
scatter that supports a defendable estimate and the ability to construct a realistic range around that 
estimate.  

It is sometimes appropriate (especially when the number of available data observations is small) to 
include physically different observations, such as air- and ground-based systems, in a single stratified data 
set. These stratifications are addressed with categorical variables and discussed further in 1.6.1 Content 
over Time. Other times, the data may be accurate but simply unexpected. Do not turn objective, data 
driven models into ones that are subjective and driven by assumptions. The following are items to 
consider when performing cost data normalization. 

1.6.1 Content over Time 
Programs evolve and change over time, often because of requirements creep, and just as often because 
they outlive the design life span. Normalizing for time assumes a change will be made to a portion of the 
raw data with the introduction of a dummy variable or a factor.  

An example is noting a large change in lot cost from one lot to the next that requires an adjustment. This 
can happen when the contractor changes the production line or chooses to buy rather than make a 
particular item. The presence or absence of customer furnished parts (or Government Furnished 
Equipment – GFE) is a consideration as is the absence of vendor unpriced effort in the cost record. 

Normalizing for time includes adjusting raw data for life cycle phase and/or acquisition strategy. Using 
data fields such as program start year, program phase (Development, Production, and O&S), and 
simultaneous vs. sequential development allows the analyst to adjust raw data to reflect the important 
context between observations and account for programmatic differences. 

1.6.2 Accounting Changes over Time 
Each contractor has a unique accounting structure that may change according to program requirements or 
change over time in response to changing policy, regulations or efforts to improve productivity. If a 
company makes a change to their accounting system, two observations collected at different points in 
time may need an adjustment to be comparable. For example, a major accounting change that moves 
manufacturing support costs into overhead could be mistaken for learning effects. Documenting 
definitions for each WBS element may require the analyst to make an adjustment (e.g., re-map) to the 
provided labor categories.   

Accounting details can be found in the vendor’s financial disclosure statements or by contacting the 
appropriate Defense Contract Management Agency (DCMA) office. Other accounting details to 
understand are overhead and fee. It is important to understand how the accounting system reports 
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overhead and fee and the collected data adjusted accordingly to generate consistent data across projects. 
Fee tends to be removed from collected cost data, while overhead tends to remain. 

1.6.3 WBS/CES mapping  
The WBS/CES, and supporting definitions, will vary between project offices and between contractors. An 
early step in the normalization process is to map data into a standard WBS (1.3.2 Cost Estimate Scope 
and Work Breakdown Structure). Mapping a particular data item, record or contractor WBS/CES element 
to a specific element in a standard WBS is often subjective. The goal is to make the best effort to ensure 
the standard WBS/CES element is populated with all the cost associated with that element. Well-
documented subjective assumptions that include a data point rather than eliminating a data point are 
preferred.  

Figure 5 below illustrates a notional WBS mapping challenge. On the left is the contractor WBS 
illustrating how they collected cost. On the right is the standard WBS, used as the basis to estimate cost. 
Even if the contractor provides cost data in the standard WBS, a best practice is to understand how the 
contractor performed the mapping. In other situations, the analyst must perform the mapping. 

Figure 5 also illustrates two mapping techniques to address the challenge noted above: many-to-one and 
one-to-one. Specific examples are: 

• Many-to-one, the source WBS  
o Need to move Integration, Assembly, Test and Checkout (IAT&C) costs from the four 

Air Vehicle sub elements to a single, separate IAT&C element. 
o Need to move the separately reported Project Management and System Engineering 

costs into one element for System Engineering and Project Management (SEPM) 
• One-to-one, the source WBS 

o Did not report System Test and Evaluation costs (it is missing). Further research is 
required.  

 

Figure 5: Notional WBS Mapping 

Mapping historical project source WBS/CES elements to a standard WBS/CES is a first step to make 
historical project costs comparable. 
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1.6.4 Escalation / Inflation 
Escalation and inflation correct for the buying power of funding over time. To estimate the cost of a new 
system properly, the analyst needs to understand the relationships between historical costs, technical 
characteristics, quantity orders and purchase timings. In order to derive defendable relationships to 
estimate the final cost, the analyst must account for the effects of persistent underlying cost increases or 
decreases that occur regardless of individual programmatic decisions. 

Two forms of underlying cost increases that the analyst must consider are inflation and escalation. 
Inflation, a subset of escalation, is defined as “the proportionate rate of change in the general price level, 
as opposed to the proportionate increase in a specific price.”11 In other words, inflation measures the 
change in the value of the dollar over time. The Department of Defense uses the term “escalation” to refer 
to price changes of particular goods (a specific commodity such as steel ships) and services in specific 
sectors of the economy.12  

When converting cost data to constant dollars in support of CER development, it is recommended that an 
escalation index measuring cost changes of analogous items be applied, and not an inflation index. To 
convert CER results to a final Then Year (TY) cost estimate13 it is recommended that escalation, not 
inflation based rates be used. Examples of data that should be adjusted using commodity-based escalation 
include contractor labor rates, aircraft unit costs, and fuel costs. Sources for escalation rates include the 
Bureau of Labor Statistics (BLS). There are many others. 

Historical cost data represents either expenditures or obligations. The key distinction is important because 
raw indices are used to convert expenditures (transactions at a specific point in time) and weighted indices 
are used to convert obligations (dollars which will be spent over an outlay period).14 A raw index is used 
when funds are obligated (guaranteed) and expended (paid for) in a single year. When funds are obligated 
in one year, but expended over a number of years, a weighted index is used to account for price change 
that occurs in those subsequent years. Concepts for raw and weighted indexes apply equally to both 
inflation as well as escalation indexes. 

Normalizing using inflation rates yields constant year dollars. 
The recommended approach is to normalize using escalation rates yielding constant prices. 

                                                      

11 Office of Management and Budget (OMB) Circular A-94 
12 Inflation and Escalation Best Practices for Cost Analysts, OSD CAPE, April 2016 
www.cape.osd.mil/files/InflationandEscalationBestPracticesforCostAnalysisforWebsiteForPubRelReview.pdf  
13 Then Year” refers to dollars required to make payments on goods or services over a specified number of fiscal 
years. The outlay profile is a function of the commodity estimated. The term “Base Year” refers to dollars required 
to make a payment over a 12-month fiscal year. Costs normalized to a Base Year (BY) with an inflation index are 
called “Constant-Year (CY) dollars,” or constant dollars. Costs normalized to a BY with an escalation index are 
called “Constant Prices (CP).” 
14 DOD 7000.14 – R Vol. 2, 1-14. 

http://www.cape.osd.mil/files/InflationandEscalationBestPracticesforCostAnalysisforWebsiteForPubRelReview.pdf
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For demonstration purposes, Table 3 illustrates the data required to normalize cost data to a given 
constant price. Raw factors to convert from one fiscal year (FY) to another are derived from the Rate 
information. The Weighted factors are derived from the Outlay Profile and the Raw factors15.  

Table 3: Notional Escalation Table 

 

Table 4 illustrates notional values required to adjust the collected costs to a specific base year, in this case 
FY2016. When the collected costs are in a specific FY, the adjustment is derived by dividing the Raw 
factor for that FY by the Raw factor for the year of the collected data. For example, Project 1: 

FY2004 to FY2016 Adjustment =  1.00000/0.80120 = 1.24813 

                                                      

15 The data in Table 3 is derived from Office of the Under Secretary of Defense, “Revised Inflation Guidance 
President’s Budget.” January or February 2005 through 2016 https://www.ncca.navy.mil/tools/inflation.cfm 

Source: Notional Electronics Escalation

Revision Date: 3-Mar-16
GFY Rate Raw Weighted Outlay Profile 
2000 1.014 0.75790 0.77759 23.7% 22.2% 21.2% 19.5% 8.0% 3.7% 1.8%
2001 1.018 0.77154 0.78986 23.7% 22.2% 21.2% 19.5% 8.0% 3.7% 1.8%
2002 1.008 0.77771 0.80364 23.7% 22.2% 21.2% 19.5% 8.0% 3.7% 1.8%
2003 1.010 0.78549 0.79350 66.84% 23.95% 7.18% 0.66% 0.35% 1.02%
2004 1.020 0.80120 0.81094 69.77% 21.43% 5.32% 2.35% 0.36% 0.77%
2005 1.028 0.82363 0.83479 65.9% 24.5% 7.6% 0.8% 0.4% 0.8%
2006 1.031 0.84916 0.85954 65.9% 24.5% 6.6% 1.3% 0.5% 0.3% 0.9%
2007 1.027 0.87209 0.88122 62.0% 25.0% 8.0% 3.0% 0.7% 0.3% 1.0%
2008 1.024 0.89302 0.89928 65.0% 25.0% 7.0% 1.5% 0.7% 0.3% 0.5%
2009 1.015 0.90642 0.91153 65.0% 25.0% 7.0% 1.5% 0.7% 0.3% 0.5%
2010 1.008 0.91367 0.92377 62.0% 25.0% 8.0% 3.0% 0.7% 0.3% 1.0%
2011 1.020 0.93194 0.94105 62.0% 25.0% 8.0% 3.0% 0.7% 1.3%
2012 1.018 0.94872 0.95810 60.0% 25.0% 8.0% 3.0% 2.0% 1.0% 1.0%
2013 1.015 0.96295 0.97221 60.0% 25.0% 8.0% 3.0% 2.0% 1.0% 1.0%
2014 1.015 0.97739 0.98526 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2015 1.011 0.98814 0.99722 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2016 1.012 1.00000 1.01154 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2017 1.018 1.01800 1.02998 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2018 1.018 1.03632 1.04929 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2019 1.020 1.05705 1.07027 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2020 1.020 1.07819 1.09168 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2021 1.020 1.09976 1.11351 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2022 1.020 1.12175 1.13578 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2023 1.020 1.14419 1.15850 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2024 1.020 1.16707 1.18167 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%
2025 1.020 1.19041 1.20530 62.0% 26.0% 5.0% 3.0% 2.0% 1.0% 1.0%

https://www.ncca.navy.mil/tools/inflation.cfm
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Be cognizant of significant digits when deriving escalation and inflation indices. Precision displayed in 
tables and images are generally not the same as the precision used in calculations. Take care to be 
consistent with precision.  

For DoD projects, collected cost data could be in terms of Then Year (TY) dollars. The process for 
adjusting collected TY costs is similar, except that the denominator is the Weighted factor rather than the 
Raw factor.  

There are only nine projects listed in Table 4, not the eleven observations captured in Figure 4: 
Consolidate Raw Cost Data into a Summary Table. Project 10 and 11 were dropped from the dataset 
going forward because they were determined to be too different from the estimated project to be useable 
(project 10 was foreign, project 11 was deemed not comparable). Project 10 and 11 remain in the raw data 
collected to support the estimate. They would be the first candidates to revisit should there be a need to 
discover additional data.  

Table 4: Adjusting Collected Cost to FY2016 

 

 Normalizing can yield significantly different results depending on the escalation indices used.  
Take caution when developing labor CERs using labor costs vice labor hours.  

1.6.5 Adjust for Quantity 
Adjusting for quantity simply means putting the dollars (cost) on a per unit scale that allows the cost of 
any number of units to be estimated. If there is no change in the cost per unit regardless of the quantity, a 
simple division of the total cost by the number of units is sufficient. If the cost of a unit is affected by 
quantity, if possible, attempt to differentiate between fixed costs (e.g., program management, systems 
engineering) versus variable costs (e.g., material, direct labor).  

The context of each data source must be established to normalize for quantity. Considerations include: 
• How many units are captured in the source data? 
• Is the source data a specific part of a production line or the entire production line? 
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• Is the cost data associated with a specific unit or lot (total or average)?  
• Are there fixed costs that should be separated from the quantity-based cost data? 
• Is there a cost improvement curve16 (CIC) based on quantity that should be considered? 

If CIC analysis is required, there are two key considerations: 1) is the cost improvement explained by the 
number of units only; 2) is the rate at which units are produced also influencing the cost? Brief 
descriptions of both are presented in the next two sections. 

1.6.5.1 Basic Cost Improvement Curve (CIC) (Learning) Theory17 
When touch labor is involved, a more elaborate treatment is often necessary to capture the impact of cost 
improvement, rate of production and/or related fixed costs. CIC analysis is a methodology to estimate unit 
cost based on known unit or lot-based cost data from a production line. CIC theory is based on the 
observation that unit (or average unit) cost is reduced by a constant factor (slope) each time the number of 
units, Q18, is doubled19.  

In the context of cost normalization, document the Q assumption and utilize CIC analysis to estimate the 
cost, Tx, of a specific unit where x is the unit number. For example, T1 is the first unit cost and T100 is the 
unit cost at the 100th unit across the data set. If necessary to estimate a theoretical Tx, a slope must be 
selected. There are at least two ways to select a slope and thereby approach the Tx calculation: 

• Use historical cost data from prior production to derive slope and calculate Tx: Use this 
approach if the estimate is a continuation of prior production and the historical production 
process is analogous.  

• Use cost data from an analogous project to derive slope and calculate Tx: Use this approach 
when the production processes are analogous.  

The choice is ultimately subjective, but important. In the case of the Electronics data, the collected cost 
for Project 2 is unit 10. All other costs collected represent the first unit cost. Project 2 cost must be 
adjusted for cost improvement. In this case, the theoretical first unit cost is the relevant analogy to the 
estimated system. Therefore, the CIC slope from the source data are used to derive the theoretical first 
unit cost. Given unit theory, as opposed to cumulative average theory [need to document theory], and a 
source data CIC slope of 95%, the exponent for the CIC equation is calculated: 

𝑏 =
𝑙𝑙(0.95)
𝑙𝑙(2) = −0.074 

                                                      

16 Also known as a learning curve. 
17 CIC theory is a wide-ranging topic that includes unit and cumulative average theory and is not covered 
in detail in this handbook. See footnote 20 for additional detail. 
18 Q is commonly used to denote the unit number in the CIC equation UnitCost=T1*Qb, where T1 is the first unit 
cost and b is LN(Slope)/LN(2).  
19 Goldberg, Andrew S., Touw, Anduin (March 2003) “Statistical Methods for Learning Curves and Cost Analysis”, 
CIM D0006870.A3/1 Rev 
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Given that the EAC, at 95% complete, of unit 10 (price – fee from Figure 4) is $157.2K, the theoretical 
first unit cost (T1) is calculated as: 

𝑇1 =
190.1 − 32.9

10−0.074 = 186.40 

1.6.5.2 Production Rate-Affected CIC Theory 
When production rates decrease, personnel-related expenses per unit tend to increase as fixed costs are 
spread over fewer units. Additionally, material costs per unit may increase because volume discounts are 
reduced or eliminated. When production rates increase, there may be the opposite effect driving the unit 
cost down. Table 5 illustrates a normalized, notional CIC dataset that is affected by rate when referencing 
“Lot Quantity.” This dataset is used to demonstrate several aspects of regression analysis. 

Table 5: Rate Affected CIC Notional, Normalized Dataset 

 

Use cost improvement curve (CIC) analysis to normalize data where unit cost, or average unit cost, 
decreases with quantity. 

1.6.6 Cost Per Unit Characteristic  
Cost data in terms of total dollars will rarely be directly comparable across projects. This is the reason we 
perform regression, to determine if there is a statistically significant performance, technical, or time 
characteristic that helps explain cost. Weight-based CERs are a common estimating method for many 
commodities. These CERs normalize for weight (e.g., dollars per pound or kilogram) and provide a 
means to estimate the cost for different sized options. In the context of normalization, deriving cost per 
unit relationships such as dollars per unit weight, dollars per unit power, dollars per month, etc. can 
provide some initial insight into the comparability of the data. 

1.6.7 Other Normalization Considerations 
There are many ways seemingly similar projects have significantly differing characteristics that need to 
be addressed in the normalization procedure. Two of many possible examples are discussed in this 
section. 
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Effectively Different Products: When normalizing data from different projects, significant portions of 
the products may be treated differently. In the event products differ, recommend normalizing at a lower 
WBS level. 

Joint Programs: When multiple partners participate in the design, development, and production of a 
program, understand the relationship of each partner and the funding provided. If there is duplicity of 
work due to multiple parties, normalize for it. Document all assumptions to alleviate any 
misrepresentations. 

More information on data normalization techniques are found in A.1 Arithmetic, both A.1.1 Basic 
Operations and A.1.2 Weights. Additionally, A.3.1.2.1 Mean addresses simple evaluation of data to 
ensure systems or components are similar enough to include in the initial dataset, even if excluded by 
further analysis. 

 Linking Cost to Schedule 1.7
A potentially important parameter to capture during the data collection process is duration. This may not 
be a simple task since consistently defining the start and end points may not be possible. Characterizing 
the CER with a duration could provide useful insight into its application to the estimate. To extrapolate a 
CER associated with programs averaging 12 months in length to a project 18 months in length, there may 
be a need to adjust the CER. Linking cost to schedule explicitly is beyond the scope of this handbook20. 

 Summary and Introducing the Electronics Example Dataset  1.8
The data collection process begins with a clear understanding of the purpose, scope, and expert 
operational/engineering context. From that basis, data sources can be identified and the collected raw data 
can be organized in a consistent and traceable manner. Not all normalization concepts in this section 
apply to every data set and further normalization may be required beyond what has been discussed. The 
goal of data normalization involves taking unlike properties or characteristics and adjusting them in a 
consistent way for comparison and statistical analysis.  

Table 6 contains the normalized data introduced in Table 2 and Figure 4. This is the dataset used 
throughout the remainder of the handbook.  

                                                      

20 The Joint Agency Cost Schedule Risk and Uncertainty Handbook (JA CSRUH) does provide some guidance on 
how to convert CERs that estimate total cost to methods that are sensitive to duration. 
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Table 6 Notional Electronics Data Set 

 

Two calculated independent variables were added to the dataset:  
• Cost per Unit Power: This is an example of 1.6.6 Cost Per Unit Characteristic. In this case, the 

cost per unit power is quite different across the projects, meaning a simple factor (linear) 
relationship between cost and power may not explain enough of the variation in the cost data. 

• Intensity: Intensity is the power per unit area, in this case kilowatts per square centimeter of the 
aperture. It is an example of creating a potentially useful variable from two collected parameters. 

With the data collected, validated, organized and normalized, the next step is to perform statistical 
analysis on the data. 
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2.0 STEP 2: ANALYZE NORMALIZED DATA 
 Overview 2.1

The goals of this section are: 
• Determine the cost estimating approach 
• Understand the normalized data through descriptive statistics 
• If the parametric approach is selected:  

o Identify potential cost drivers 
o Hypothesize functional form 
o Hypothesize error term (additive or multiplicative) 

There are many ways to approach the goals of Step 2. The flowchart (where 𝑙 is the sample size) in 
Figure 6 is one. 

 

Figure 6: Step 2 - Analyze Normalized Data 
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Though presented as a logical series of steps, the CER development process tends to be iterative. If any 
step of the investigation or analysis reveals the need for additional data, return to the data collection step.  

 Cost Estimating Methods 2.2
Initial analysis of the data allows the analyst to select the appropriate methods from the following: 

• Analogy estimates by scaling or adjusting historical costs from a similar program to account for 
key physical, performance, or programmatic metrics. Typically adjustment, or scaling, factors 
are obtained from the engineering and/or program management teams based on expert opinion of 
complexity, etc. 

• Straight Average is the simplest of the statistical estimating methods. This method is simply the 
average of the historical projects’ cost and other statistics. 

• Parametric analysis uses comparable historical data to develop CER models based upon 
performance, technical, programmatic and/or schedule data. It extends the analogy process to 
multiple observations and is the focus of this handbook. 

• Engineering Build-Up is feasible when significant design information exists to support this 
method. Two major components of an engineering build-up include: 

o Labor estimates based on industrial engineering standards 
o Material estimates based on catalog prices, vendor quotes, or comparable items 

• Extrapolation from Actuals is an estimating technique implemented as program execution 
proceeds and as program-specific cost data are accumulated. 

Remember to document rationale and source for chosen methods. 

Engineering Build-up and Extrapolation from Actuals are applicable in the later stages of a new project. 
They are not discussed further in this handbook. One or more of the following qualitative or statistical 
reasons may drive the choice between Analogy, Straight Average, or Parametric: 

• Item value: Focus estimating effort on the larger items, rather than spending a lot of time 
estimating an item of relatively small value. A simple analogy, even a poor one, may be 
sufficient for a low value item that is a tiny fraction of the program cost. 

• Difficulty in collecting cost driver21 data: Obtaining quality data may not be possible for 
hypothesized cost drivers. 

• What-If analysis requirements: Parametric CERs facilitate a rapid and consistent way to 
investigate the cost impact of different solutions. They also provide a way to identify project 
parameters that have the most influence on cost (Section 4.7 CER Responsiveness). 

• Reduce variance of the estimate: A reason to build a CER is to reduce the prediction interval 
around the estimated value when compared to a straight average. Even when a straight average 
result matches the more complex CER point estimate, the CER prediction error may be 
significantly lower (Step 5: Characterize Uncertainty). 

                                                      

21 Cost driver, in this handbook, refers to performance, technical, programmatic and schedule characteristics that are 
shown through statistical analysis, supported by operational or engineering expert judgment to influence cost. Cost 
contributors are the individual WBS/CES element costs that contribute to the total project cost. 
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The item’s value, the availability of cost driver data, the need to perform What-If analysis, and the 
ability to reduce the error in the estimate drive the selection of cost estimating method. 

 Choosing Between Analogy, Straight Average or a CER 2.3
2.3.1 Assess Number of Observations (𝒏) 
The first step in data analysis is to assess the available data. Part of that assessment is evaluating the 
dataset to understand how many complete normalized observations are available for analysis, traditionally 
denoted with a lowercase 𝑙. Here, “complete” means observations with values for both final (or nearly 
final) actual cost (𝑦) and all independent variables or cost drivers (𝑎𝑖) of interest. Often there will be 
“holes” in the data set, thus, 𝑙 may vary depending on the subset of cost driver variables (Section 2.7 
Identify Potential Variable Sets). In the Electronics example introduced in Table 6 with nine 
observations, only seven of them have 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and Cost data, thus n=7. 

At least five observations are required to assess the significance of a linear relationship with one 
independent variable or to validate normality (Section 4.2.1.4 Normality of Errors). The following cut-off 
values are rules-of-thumb rough guidelines. The important principle is tailoring the estimating approach 
to the quantity and quality (completeness, reliability) of available data. 

If 𝑙 =  1, proceed to Section 2.3.2 Analogy Estimate.  

If 𝑙 =  2, 3, or 4, it is feasible to use a parametric estimate, but an analogy may be more appropriate. In 
both cases, the alternate method should be used as a cross check. Proceed to Section 2.3.3 Estimating with 
Very Small Data Sets. (There are other options outside the scope of the handbook, such as Bayesian 
techniques22). 

If 𝑙 ≥  5, develop a parametric CER. Proceed to Section 2.4 Univariate Data Analysis. 

If the hypothesis is for functional forms containing more than one independent variable, five observations 
will not be sufficient. A degree of freedom is lost for every coefficient estimated in the hypothesized 
functional form and for every constraint placed on the regression method (see 3.3.5.5 Zero Percentage 
Bias Minimum Percentage Error (ZMPE)). A common way to think of degrees of freedom is the number 
of independent pieces of information available to estimate another piece of information. For instance, the 
mean of the numbers 4, 6, 8 is 6. You can replace any two of these numbers with some other number. 
However, the third number is now fixed if the mean is to remain 6. Similarly, in regression analysis, 
subtract the number of unknowns (coefficients in the model) from the number of observations to obtain 
the degrees of freedom. If the CER functional form has two independent variables, then the number of 
unknowns will be three (the intercept plus two coefficients). Instead of 𝑙 ≥  5, a more precise guide is 
𝑙 − 𝑘 ≥  3 where k is the number of unknowns in the CER. 

                                                      

22 Smart, C. (14 April 2014) “Bayesian Parametrics: How to Develop a CER with Limited Data and Even Without 
Data”, Missile Defense Agency, Best Paper Overall ICEAA Workshop June 2014 
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Why is three (3) the minimum acceptable number of degrees of freedom for regression? In fact, the 
general literature on regression analysis suggests that a minimum of 10 observations are required for 
every independent variable. In cost analysis, that is a bridge too far. A simple reason to settle on three is 
that for less than two degrees of freedom, the standard deviation of the t-distribution is undefined (the 
area in the tails is too great). Since we use t-distributions for regression validation, three is the absolute 
minimum, but always strive for more. 

If the number of independent variables, 𝒌, is known, the minimum number of observations to collect is 
𝒏 − 𝒌 ≥ 𝟑. 

2.3.2 Analogy Estimate 
An Analogy Estimate uses a single historical data point, adjusted using factors for differences between the 
comparable historical system and the new system (e.g., a factor to account for complexity differences 
between two similar systems). The scalability or adjustment of the analogy should be discussed with at 
least one subject matter expert (SME) associated with the program. Remember to document SME 
rationale, basis of expertise, and contact information.  

In addition to scaling a new system, use an analogy to develop cost-on-cost factors to apply to the new 
estimated system. For example, if training associated with a system accounts for approximately X.X% of 
the Average Unit Cost (AUC), then training for the new system is approximately X.X% of its AUC.  

The assessment of analogy uncertainty may be subjective given the lack of data. The Joint Agency Cost 
Schedule Risk and Uncertainty Handbook (JA CSRUH)23 provides a detailed discussion on how to assign 
uncertainty subjectively. 

Less than five observations or the lack of potential cost driver data leads to an Analogy or Straight 
Average cost estimating method. 

2.3.3 Estimating with Very Small Data Sets 
With two, three, or four observations, a simple linear CER with a slope and intercept term has 0, 1, or 2 
degrees of freedom, respectively, which is generally not sufficient for satisfactory statistical results.24 The 
following methods are valid however; analysts must be prepared to defend the rational for their chosen 
method: 

• Analogy: pick the most representative data point to use as the basis for an Analogy Estimate 
(Section 2.3.2 ) and consider the others in the adjustment of the Analogy.  

• Traditional Parametric: be aware of the limitations of many of the statistical techniques to 
follow. Consider fixing a parameter coefficient as described in 3.4.3 Pseudo-Exact Prior 

                                                      

23 http://cade.osd.mil/tools/other-cost-tools 
24 This holds true under the traditional statistical paradigm where degrees of freedom are essential for hypothesis 
testing. Additional advanced approaches exist for handling small data samples beyond the scope of this guide, 
including the “Bayesian” approach. See footnote 22. 
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Information on Parameter Values). This technique will protect degrees of freedom, albeit biasing 
the results. 

• Bayesian Parametrics: a technique to develop estimates from limited data. See footnote 22.  
• See Appendix A.3.3.1 Small Data Sets for more information on the treatment and consequences 

of small data sets. 
If proceeding with a traditional parametric estimate, first perform univariate data analysis on both the 
dependent and independent variables. Understanding the mean, median, range, and other statistics helps 
to understand the limitations of the dataset. 

2.3.4 Straight Average 
Estimating cost using a straight average of the normalized cost observations yields a single result. While 
the straight average method is considerably easier to implement, this method will generally result in a 
larger variance than a CER. 

2.3.4.1 Arithmetic Mean 
The straight average, or arithmetic mean25, of a data set is the sum of the costs divided by the number of 
sample observations. The sample mean is an estimate of the population mean (also called the true mean).  

𝑆𝑎𝑆𝐴𝑙𝐴 𝑀𝐴𝑎𝑙 = 𝑎 =
1
𝑙
�𝑎𝑖

𝑖=𝑛

𝑖=1

 

2.3.4.2 Confidence and Prediction Intervals About the Arithmetic Mean 
The confidence interval (CI) estimates plausible values for the population mean for a given probability 
level. 

𝐶𝐶𝑙𝐶𝐶𝐶𝐴𝑙𝐶𝐴 𝐼𝑙𝐴𝐴𝐴𝐼𝑎𝑙 = 𝑎 ± 𝐴1−∝2 ,𝑛−1𝜎��
1
𝑙

 

 

𝑆𝑎𝑆𝐴𝑙𝐴 𝑆𝐴𝑎𝑙𝐶𝑎𝐴𝐶 𝐷𝐴𝐼𝐶𝑎𝐴𝐶𝐶𝑙 =  𝜎� = �∑(𝑎𝑖 − �̅�)2

𝑙 − 1
 

 
Where 𝑎 is the sample mean, 𝐴 is the value for the t-distribution with 𝑙 − 1 degrees of freedom giving a 
probability (area) of 𝛼 2�  in the right-hand tail, and 𝑙 is the number of sample observations. The sample 
standard deviation divided by the square root of the number of observations is the definition of the 
standard error. 

                                                      

25 The arithmetic mean is not always the correct approach to establish the mean of the collected data. For additional 
detail and guidance, see Hu,S. (June 2010) “Simple Mean, Weighted Mean, or Geometric Mean?”, ISPA/SCEA  
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A different statistic, the prediction interval (PI), is required to address the probability range for a specific 
project future cost. The PI bounds the estimate of a future data point, 𝑎0, with a specified level of 
probability. The PI expression is: 

𝑃𝐴𝐴𝐶𝐶𝐶𝐴𝐶𝐶𝑙 𝐼𝑙𝐴𝐴𝐴𝐼𝑎𝑙 = 𝑎 − 𝐸 < 𝑎0 < 𝑎 + 𝐸 

𝐸 is the half-width of the PI. Traditionally, the normal distribution is used when there are 30 or more 
observations. The t-distribution is used when there are fewer than 30 observations. However, this rule-of-
thumb is outdated since modern software, including MS Excel, can easily provide the t-distribution for 
any number of observations. Some agencies use the t-distribution for up to 100 observations. In cost 
estimating, the t-distribution is usually used due to the small number of observations. The PI formula is:  

𝑃𝐴𝐴𝐶𝐶𝐶𝐴𝐶𝐶𝑙 𝐼𝑙𝐴𝐴𝐴𝐼𝑎𝑙 = 𝑎 ± 𝐴1−∝2 ,𝑛−1𝜎��1 +
1
𝑙

 

For example (summarized in Table 7):  
• Table 6 Notional Electronics Data Set consists of nine cost observations, n=9 
• Sample mean, 𝑎 = $461K 
• Sample standard deviation, 𝜎 = $203.5K 
• The CI and PI standard errors are $67.83K and $214.50K, respectively 
• The CI and PI bounds are derived from a t-distribution with 8 degrees of freedom  
• A 95% prediction interval26 (α value of 0.05), MS Excel’s inverse t-distribution function 

T.INV(0.975, 8) yields 2.306. The 95% PI upper bound is $461.11 +  2.306 ∗ $214.50 =
 $955.76 

Table 7: Assessing the Accuracy of the Electronics Univariate Analysis 

 

The 95% CI (error of the sample mean represents the population mean) and the PI (error of using the 
sample mean as a future estimate) for the electronics data are illustrated in Figure 7. In this example, 
there is a 95% probability that the actual price of the new project will be fall between -$33.54K and 
$955.76K. In this example, the lower tail of the PI extends below zero. Modeling this distribution in the 

                                                      

26 Individual agencies may have different requirements or guidance pertaining to the significance level to be used for 
prediction intervals. Follow local guidance when selecting a significance level. 

Statistical Output FY16$K
Mean $461.11
Std Dev $203.50
Confidence Interval Standard Error of the Mean $67.83
Prediction Interval Standard Error of the Mean $214.50
t distribution at 97.5%, 8 degrees of freedom 2.3060
97.5% Confidence Interval  Bound $617.53
97.5% Prediction Interval Bound $955.76
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cost model means the simulation will draw negative cost numbers for some trials. To avoid this situation, 
the analyst can truncate the distribution at zero (or some other positive threshold established by the data 
or a SME). However, truncation changes the shape and bounds of the distribution. It eliminates some 
variance, but may increase the mean. The decision to truncate is an arbitrary one governed by local policy 
rather than mathematics. There is no consensus on whether to truncate or not. Seek specific guidance 
from your agency. 

 

Figure 7: Confidence and Prediction Interval for the Straight Average of the Electronics Cost Data 

See Figure 74: Compare OLS CER PI to a Straight Average PI for an illustration of how much smaller the 
prediction interval can be using regression to develop a CER. 

If basing the estimate on a straight average, then the path through this guide is complete. The PI just 
discussed accounts for the uncertainty of the estimate (the mean). Proceed to Step 6: Document CER. 
Otherwise, proceed with CER development by going to 2.4 Univariate Data Analysis. 

 Univariate Data Analysis 2.4
Univariate analysis is statistical analysis of a single variable. It provides a way to develop a greater 
understanding of each variable before generating scatter plots to uncover relationships. 

2.4.1 Significant Digits 
The normalized project costs introduced in Table 6 Notional Electronics Data Set are only available to the 
closest $1K because that is consistent with how the data was collected (see Figure 4: Consolidate Raw 
Cost Data into a Summary Table). When collecting data, maintain the precision of the data. More 
significant digits in calculations reduce the impacts of rounding, which may have large implications when 
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dealing with large numbers, and long lists of numbers that sum27. The final results should be reported 
using the precision of the original data sources. 

A common theme in most references is that “All calculations should be completed prior to any 
rounding to avoid introducing additional error into the analytical result.” 

2.4.2 Descriptive Statistics 
Descriptive statistics summarize the features of the collected observations. Descriptive statistics are 
sample statistics, not population statistics. Even a dataset representing all programs ever executed would 
represent a sample from the population of all possible programs. Typical descriptive statistics include 
measures of central tendency, measures of dispersion, kurtosis, and skewness. These measures form the 
basis of virtually every quantitative analysis of data.  

2.4.2.1 Measures of Central Tendency 
Measures of central tendency include mean, median, and mode. See A.3.1.2 Measures of Central 
Tendency for details. Measures of central tendency are single statistics used to represent the dataset as a 
whole. In the absence of potential cost drivers, they can be used as the point estimate as described in 2.3.4 
Straight Average.  

2.4.2.2 Measures of Dispersion 
Measures of dispersion characterize the variability in the dataset (i.e., how similar or dissimilar the 
observations are). Typical measures of dispersion are variance, standard deviation, coefficient of variation 
(CV), and range. The units of variance are the square of the source data units. The units of standard 
deviation, on the other hand, are the same units as the source data. The CV is the unitless measure of 
spread calculated by dividing the standard deviation by the mean. See A.3.1.3 Measures of Dispersion for 
details.  

The variability in the dataset can help identify potential questions to ask. For instance, are all the projects 
acquiring similar electronics, or are there some very different projects in the dataset, thus explaining why 
the costs may be different? Do the most expensive projects align with a particular contract type (for 
instance, FFP or T&M)? Are the intended operating environments different?  

In general, a wide range of observations makes a CER more useful. Analyzing measures of dispersion 
helps identify data elements that may need more attention. A single data point that is far away from the 
rest of the data (three standard deviations is a reasonable test) may not belong in the dataset and may have 
an undue influence on the resulting CER (Section 4.3.1 Influential Points). This data point may also be 
the only accurate data point in the set. Do not eliminate data without a sound reason and if eliminated, 
document the reason. 

                                                      

27 There are many sources of guidance on the rules for significant figures. One source is: B. Michener, C. Scarlata, 
and B. Hames, “Rounding and Significant Figures” U.S. Department of Energy Technical Report NREL/TP-510-
42626 January 2008. 
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2.4.2.3 Descriptive Statistics Summary 
Table 8 illustrates one way to document most of the descriptive statistics identified in this section. Some 
observations on these statistics include: 

• Mode: the most common value occurring in the dataset; Table 8 does not include the mode 
because none of the data is repeated. 

• Mean vs Median: the location of the mean relative to the median provides insight into the skew 
of the data. The formal assessment is the skewness28 statistic.  

• Range: establishes the complete set of all possible resulting values of the data, but provides no 
insight into the dispersion of data between the lowest and highest value.  

• Coefficient of Variation (CV): provides a unit less measure to compare dispersion across 
different variables. While the standard deviation is a measure of the data’s dispersion, it cannot 
be directly compared to other data sets without context. To provide context, divide the standard 
deviation by the mean to calculate the CV. The lower the CV, the less dispersion in the data. 

Table 8: Descriptive Statistics Summary 

 

2.4.3 Generate a Histogram 
A histogram is a graphical representation of the data dispersion and is a good way to visualize how the 
data are dispersed (its shape). Determining how to group the data (interval or bin size) is an important part 
of generating a histogram. A larger bin size reduces noise in the data attributed to small data set sampling. 
A smaller bin size provides more precision when there is enough data to warrant it. Cost analysis 
histograms (supporting descriptive statistics) tend to use equal interval bins. Appendix A.3.1.1.2 
Histogram contains more information on bin selections. 

                                                      

28 There are circumstances rarely found in cost analysis where the location of the mean relative to the median does 
not accurately establish the skew direction.  

Collected, Validated and Normalized Data Calculated Data

Cost Power Aperture
Cost per 

Unit Power Intensity
Observation (FY16$K) (kW) (cm2) ($K/kW) (kW/cm^2)

Number 9 9 7 9 7
Minimum $200.0 5.00 8.00 $27.778 0.625
25 percentile $300.0 7.00 8.45 $32.000 0.892
Median $460.0 12.00 9.00 $38.333 1.333
Mean $461.1 13.44 8.90 $36.768 1.496
75 percentile $560.0 18.00 9.35 $40.000 2.079
Maximum $800.0 25.00 9.70 $46.154 2.577
Range $600.0 20.00 1.70 $18.376 1.952
Quartile Range $260.0 11.00 0.90 $8.000 1.187
Quartile/Range 0.433 0.550 0.53 0.435 0.608
Std Deviation (S) $203.5 7.29 0.64 $5.985 0.772
CV 0.441 0.542 0.072 0.163 0.516
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Figure 8 shows the histogram for the Electronics cost data in Table 6 for a variety of bin size selections. 
The 𝑦-axis is the frequency associated with the particular cost range. For example, in the 3-bin histogram, 
four projects cost less than or equal to $400K, three projects cost greater than $400K but less than or 
equal to $600K and so forth. Note how the distribution shape changes with the number of bins. 

 

Figure 8: Histogram of Electronics Cost Data 

The histogram modal bin as shown in Figure 8 is the leftmost bin for the 3-bin and 6-bin charts. This is 
the mode of this particular histogram of the data, not the mode of the dataset. Note that two of the 
histograms have more than one modal bin. 

Histograms are not always useful for small data sets. With just a few data observations, it is very difficult 
to gather insights into the “true shape” of the data. Creating several histograms as done in Figure 8 can be 
useful in understanding where these points lie. Fortunately, as more data are collected, a clearer picture 
often evolves. For more information, see A.3.1.1 Statistical Graphics. 

Perform univariate analysis on the dependent and independent variables to understand the scope of the 
data, possible limitations and the presence of potential outliers 

 Measure Correlation between Dependent and Independent Variables 2.5
Information collected as described in section 1.3 Cost Estimate Purpose and Scope of the data collection 
process provides the basis for identifying potential programmatic, performance and technical parameters 
that may be cost drivers. The objective is to enhance our understanding of potential response-predictor 
correlations, and not yet draw definitive conclusions. If this correlation measurement does not identify 
potential cost driver variables, return to Step 1: Purpose, Scope, Collect, Validate, & Normalize.  
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Additionally, a good practice is to measure the correlation between multiple candidate drivers and avoid 
correlated drivers in the same CER or consider techniques as described in 3.3.6 Ridge Regression.  

The degree that a potential driver variable correlates with the dependent variable helps to identify 
viable candidates for regression. 

2.5.1 Correlation Types 
The two correlation coefficients29 that measure the relationship between collected data are:  

• Pearson product-moment (PPM) correlation coefficient(𝐴): a measure of the linear 
relationship between two sets of variables30. The  PPM correlation formula shown below is used 
in the MS Excel CORREL() function:  

𝐴 =
∑(𝑎 − �̅�)(𝑦 − 𝑦�)

�∑(𝑎 − �̅�)2(𝑦 − 𝑦�)2
 

where �̅� and 𝑦� are the arithmetic means of the respective variables. Use Table 45: Pearson 
Product Moment Critical Values to determine if the correlation is statistically significant. See 
Appendix A.3.2.2.1 Pearson’s r for more detail on this coefficient. 

• Spearman’s Rho: the correlation coefficient uses the same formula as PPM on the ranks of the 
data instead of the raw values themselves. This method has properties similar to Pearson’s r, 
with values ranging from -1 (“perfect” negative correlation) to +1 (“perfect” positive 
correlation), and is indifferent to the underlying form of the data. The Spearman coefficient 
provides the strength and direction of the monotonic31 relationship between two variables. Table 
46: Spearman’s Rho Critical Values contains a reference table of critical values, though 
approximations also exist.32 See Appendix A.3.2.3.1 Spearman’s Rho for more detail on this 
coefficient. 

When using the critical value tables, Appendix D Correlation Critical Value Tables, conduct a two-sided 
test to determine if the correlation is significant at all. If there is an a priori reason to expect a positive or 
negative correlation, use a one-sided test. If the measured correlation is greater than the critical value, 
then correlation is statistically significant. See Appendix A.2.1.4 Correlation for more information 
regarding the mathematical definition of correlation and references for more information regarding its 
diagnosis and implications. 

                                                      

29 Kendall’s Tau (τ) is another measure the ordinal association between two variables, but rarely used in cost 
analysis. See A.3.2.3.2 Kendall’s Tau for more details  
30 P. Garvey (1999), “Do not use Rank Correlation in Cost Risk Analysis”, 32nd Department of Defense Cost 
Analysis Symposium is one of many references to state that PPM is the only appropriate measure of correlation for 
cost risk analysis 
31 Monotonic means that as the value of one variable increases, the other always increases or always decreases.  
32 Specifically, the pth percentile of Spearman’s Rho is approximately 𝑧𝑝/√𝑙 − 1, where the numerator 𝑧𝑝 is the 
corresponding percentile of the standard normal distribution. 
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Table 9 contains the PPM and Spearman correlation values for the Electronics data shown in Table 6. 
Both Power and Aperture are highly correlated with cost. While the values in both matrices are similar, a 
recommended best practice is to compare PPM and Spearman correlation coefficients. Large differences 
between them may indicate the relationship between the two variables is not linear.  

Table 9: Normalized and Composite Variable Correlation Matrix 

 

After reviewing, the PPM and Spearman tables shown above, Power and Aperture are highly correlated. 
The highlighted composite variable, Intensity (created by dividing Power by Aperture area), has the 
highest correlation with cost. 

All the values in the tables exceed the critical values in Table 45 (0.582) and Table 46 (0.600) for a one-
tailed test at a significance level of α = 0.05. The test provides sufficient evidence to conclude the 
observed positive correlations between Cost and Power, Aperture, and Intensity are statistically 
significant. See Appendix A.3.2.1 Hypothesis Testing for a general discussion of hypothesis testing and 
significance levels. 

Univariate analysis can be misleading for multivariate CERs and should not be the sole rational used to 
screen out variables.  When primary drivers are understood, identifying the second and third variables to 
improve the CER becomes a challenge. 

Correlation does not imply causation.  
SME input is valuable to ensure relationships make sense. 

2.5.2 Identify Redundant Variables and Potential Multicollinearity 
Power and Aperture are examples of two highly correlated variables indicating they have a strong 
relationship with each other, essentially conveying redundant information. This phenomenon, called 
multicollinearity, can lead to inaccurate coefficients because of undue influence of the effect of correlated 
independent variables. These types of variables may convey the same information from a CER 
perspective. One variable cannot change without the other changing as well. In the case of our notional 
example, a CER based on both Power and Aperture may lead to inaccurate cost sensitivity because the 
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variables are strongly correlated. Section 4.3.2 Multicollinearity provides a more in depth discussion on 
the topic and analytical techniques to mitigate the effects.  

 Scatter Plot of the Most Promising Cost Drivers 2.6
A scatter plot is a graph of observations displaying the relationship between two variables. An ordered 
pair (𝑎,𝑦) represents each point, with the dependent variable shown on the 𝑦-axis and the independent 
variable on the 𝑎-axis. Many choose to build scatter plots before univariate or correlation analysis to 
visualize potential cost drivers. When there are only a few drivers to investigate, this is a reasonable first 
step. However, the descriptive statistics and correlation assessments are very easy to perform and yield 
useful information that will help to interpret the scatter plots. Performing the analysis and building the 
scatter plots are important steps in the process. The sequence is not as important.  

Table 9: Normalized and Composite Variable Correlation Matrix highlights the need to develop scatter 
plots of cost and all independent variables. Figure 9 is a scatter plot illustrating the relationship between 
Cost and Power. As Power increases, Cost also increases. This is consistent with engineering judgment 
obtained in Section 1.3.3 that illustrated a strong positive correlation. In the event Cost decreased as 
Power increased, recommend confirming this non-intuitive relationship with SME input. Visually 
observing a trend is not enough. The analyst must be able to explain and defend the relationship.  

  
Figure 9: Scatter Plot of Cost vs. Power  

Figure 10 shows a scatterplot of Cost versus Aperture. Again, there is a positive correlation, meaning as 
the Aperture size increases, so does Cost.  
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Figure 10: Scatter plot of Cost vs Aperture 

Figure 11 illustrates an example of negative correlation between the factor Cost Per Kilowatt ($/kW) 
versus Cost. As the factor increases, Cost decreases. 

  

Figure 11: Scatter Plot of Cost vs Cost per Kilowatt 

Figure 12 shows the relationship between Power and Aperture. Both of these variables are highly 
correlated with Cost. As shown in the chart and 2.5.1 Correlation Types, they are also highly related to 
each other and illustrate multicollinearity. The high correlation suggests that Power is related to Aperture. 
The potential negative effects of multicollinearity may be a reason to avoid using Power and Aperture in 
the same CER. Understanding this type of relationship is an important step to understanding the dataset. 
Section 4.3.2 Multicollinearity provides a more in depth discussion on the topic. 



 CER Development Handbook 
 

46 

 

Figure 12: Demonstration of Multicollinearity between related variables 

For additional details on scatter plots, see Appendix A.3.1.1.1 Scatter Plot. 

 Identify Potential Variable Sets 2.7
Working in conjunction with the programmatic and technical experts, use the analysis described above to 
identify the best variable sets to develop candidate CERs. A CER requires a single dependent variable33 
(usually cost or effort) and one or more independent variables (cost drivers). The focus should be to 
choose quality programmatic, technical, or performance parameters that are good predictors of the 
dependent variable.  

See Appendix A.3.1 Descriptive Statistics for more insight on using statistics to help choose the best 
potential variable sets and interpret their statistical measures. 

 Hypothesize Functional Form and Error Term 2.8
The following rules apply when trying to determine the best functional form for the data available. 

• The rules of physics must stand: When dealing with weights, power, and other physical 
parameters, the equation must logically sound.  

• Keep it simple: The relationship should be as simple as possible. Adding independent variables 
that do not significantly improve the statistics complicates the CER, potentially making it too 
difficult to use, and may needlessly consume degrees of freedom. Do not ignore engineering 
judgment. Variables historically known to drive cost should be given careful consideration. 

• Stratifying the data, if necessary: Using dummy variables is a technique to derive relationships 
affected by categorical differences. A dummy variable can test for a statistically significant 
multiplier or additive cost that defines how categorical differences influence cost. See 3.2.3 
Dummy Variables for details, particularly when combining disparate datasets.  

                                                      

33 Models with more than one dependent variable are termed multivariate multiple regression. These 
models are not addressed in this handbook. 
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• Use statistics cautiously: Just because the regression produces a high coefficient of 
determination, 𝑅2 (4.5.1.1 R-squared), does not mean the trend line represents a useful 
relationship. There are other fit and predictive statistics to consider. See 4.0 Step 4: Validate CER 
for details.  

Establishing a sound hypothesis early in the process will guide the steps that follow. Understanding 
historical cost drivers has a positive influence on data collection and CER development. 

Functional form exploration is driven by the research performed while collecting the data, particularly 
guidance from SMEs, and the results of the correlation analysis. Exploring CER functional forms is an 
iterative process. Modeling the data often involves testing and re-evaluating functional forms and variable 
sets many times prior to selecting the “best” equation. Physics and engineering principles (not 
hypotheses) should supersede statistics in the evaluation process. This guide presents regression34 
equation forms in the following order: 

• Linear:  𝑦 = 𝛽0 + 𝛽1𝑎 
• Power:  𝑦 = 𝛽0𝑎𝛽1  
• Exponential:  𝑦 = 𝛽0𝐴𝛽1𝒙 
• Logarithmic: 𝑦 = 𝛽0 + 𝛽1 ln 𝑎 
• More General Functional Forms 

Where, 
𝑦 = estimated value 
𝛽0 = y-intercept (vertical calibration) 
𝑎 = independent variable (driver variable) 
𝛽1 = coefficient of 𝑎  

 
Considerations that influence the choice of Regression Methodologies are as follows: 

• Transform to linear: Power and exponential forms can be transformed35 to test for a linear 
relationship. The logarithmic form is already in a linear functional form. 

• Select error term type: Selection of the error term type is independent of the functional form.  

Figure 13 is a flow chart describing a systematic process to explore functional form and error term 
combinations. The first step is to review the plots created under 2.6 Scatter Plot of the Most Promising 
Cost Drivers and determine by visual inspection if the data appears to be one of the following patterns: 

• Straight line 
• Concave up, concave down, where the cost increases/decreases with the independent variable. 
• Concave down, where the cost decreases with the independent variable. A cost improvement 

curve (where cost decreases with quantity) is a common example. 

                                                      

34 In cases where functional form cannot be solved using regression techniques, other techniques may be required. 
35 See Appendix A.1.1 Basic Operations for additional information on working with exponents and logarithms. 
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• Steep concave up, concave down 

Other nonlinear forms are possible, but the above represents the most common. All of these examples can 
be modeled with a functional form that is either linear or can be transformed to linear (e.g., power, 
exponential, logarithmic).  

 
Figure 13: Selecting a Functional Form and Error Term 

More complicated functional forms are possible, such as adding a non-zero 𝑦-intercept to the power form 
to create the triad form (Section 2.8.5 Triad Functional Form), or combining multiple integer-power terms 
to create a polynomial. These often require more advanced regression methods and are discussed in the 
following sections. 
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Using 3.3.1 Ordinary Least Squares (OLS) as a diagnostic tool helps to understand the data, even with 
small datasets. A rigorous assessment of the linear model will determine if a linear functional form and an 
additive error term are appropriate. If not, other methods may need to be considered as described in Step 
3: Generate CER. 

If there is strong evidence the hypothesized relationship is intrinsically nonlinear or the error term is non-
constant, then functional form/error methods other than linear/additive deserve attention, such as  3.3.2.2 
Weighted Least Squares (WLS) or 3.3.5 Non-linear Least Squares (NLS).  

Table 10 supports the following functional form discussion. The cost data in the Linear column is from 
Table 6 and has been sorted on Power (kW) to visualize the data range. The other cost columns in Table 
10 contain different results from each functional form described below: 

• Power < 0 < 𝛽1 < 0: follows a concave down pattern. The 𝛽1 represents the exponent in the 
power form equation. 

• Power 𝛽1 > 1: follows a concave up pattern 
• Exponential: follows a steeper concave up pattern  
• Logarithmic: follow a steeper concave down pattern 

Table 10: Notional Data to Demonstrate Functional Forms 

 

The following charts illustrate the concave down and up patterns and functional forms they fit. 

 

Figure 14: Concave Down Patterns 

Cost $K FY2016
Functional Forms

Linear Power Power Exponential Log Power
Observations arithmic (kW)

Observation 1 $200 200.0 100.0 200.0 200.0 5.0
Observation 2 $240 215.0 41.0 116.0 250.0 5.2
Observation 3 $300 329.0 82.0 152.0 330.0 7.0
Observation 4 $390 472.0 154.0 191.0 475.0 10.0
Observation 5 $460 448.0 242.0 254.0 550.0 12.0
Observation 6 $560 575.0 497.0 415.0 750.0 17.8
Observation 7 $500 625.0 474.0 395.0 700.0 18.0
Observation 8 $700 706.0 655.0 533.0 775.0 21.0
Observation 9 $800 800.0 800.0 800.0 800.00 25.0

𝟎 < 𝑿𝟏 < 𝟏 𝑿𝟏 > 𝟏
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Figure 15: Concave Up Patterns 

2.8.1 Linear Functional Form 
The simplest functional form is a linear equation with a single explanatory variable used to predict the 
dependent variable. The equation is in the form: 

𝑦 = 𝛽0 + 𝛽1𝑎 

Where, 

𝑦 = estimated cost 
𝛽0 = y-intercept (vertical calibration) 
𝛽1 = coefficient of 𝑎 (constant change in cost per constant in 𝑎) 
𝑎 = independent variable (cost driver) 

  

Figure 16: Linear Functional Form Example 

Mathematically, the 𝑦-intercept is the value the equation yields for an 𝑎-value of zero. Unless the 
hypothesized model has a specific role for the 𝑦-intercept, avoid ascribing meaning to it. The y-intercept 
consumes another degree of freedom but provides a vertical adjustment allowing the prediction line 
(CER) to better fit the data. Be sure the point being estimated lies within the relevant data range. When 
the linear CER intercept is excluded or has a value of zero, the coefficient 𝛽1 is called a factor (rather than 
a slope). Section 4.4.2.1 Intercept Term discusses the intercept and its validation in more detail. 



 CER Development Handbook 
 

51 

The coefficient 𝛽1 is the crucial component of a simple linear CER, representing the slope of the line. For 
every unit increase (constant change) in 𝑎, there is a 𝛽1-unit increase (constant change) in 𝑦. This same 
relationship holds regardless of the value of 𝑎. A positive slope (𝛽1 > 0) indicates positive correlation 
between cost (𝑦) and the cost driver (𝑎) (e.g., system power). Cases where cost increases as the cost 
driver gets smaller (e.g., microchip size) indicate the line will have a negative slope (𝛽1 < 0). 

When data does not demonstrate a linear relationship, transforming the dependent and/or independent 
variable(s) can allow for the use of linear analysis techniques to analyze non-linear data. If a scatter plot 
forms a discernible curve, then transformations often cause a linear pattern to emerge. This transformation 
is demonstrated for the Power and Exponential functional forms. The focus is currently on a single 
independent variable (𝑎).  

This simple linear model extends to the multiple variable cases: 𝑦 =  𝛽0  +  𝛽1𝑎1  +  𝛽2𝑎2 and so on. 
Each cost driver (𝑎𝑖) has an independent additive relationship with cost (𝑦). 

2.8.2 Power Functional Form 
Power Models take the form: 

𝑦 = 𝛽0𝑎𝛽1  

Where, 

𝑦 =  estimated cost 
𝛽0 =  coefficient of 𝑎 (multiplicative scaling) 
𝛽1 =  exponent of 𝑎 (response of cost, percent change per percent change in 𝑎) 
𝑎 =  independent variable (cost driver) 

 

The scatter plots of power functions appear curved, with the shape dependent upon the exponent 𝛽1. 
While a fixed percent increase in 𝑎 always yields a fixed percent increase in 𝑦, regardless of position on 
the curve, the rate of change (slope) does change for different values of 𝑎 as illustrated in Figure 17. For 
an exponent between zero and one, cost increases at a decreasing rate. For an exponent greater than one, 
cost increases at an increasing rate (as the cost driver increases). Even when the curved pattern is quite 
subtle, the regression statistics may demonstrate this is a better choice than linear. 

 
Figure 17: Power Functional Form Examples 
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The nonlinear Power equation may transform to a linear form as follows: 

Initial Power Equation: 𝑦 = 𝛽0𝑎𝛽1  

Logarithmic Transformation of the Power Equation: ln(𝑦) = ln(𝛽0) + 𝛽1 ln(𝑎) 

Logarithms turn multiplication into addition (products to sums), and exponentiation into multiplication. 
Instead of plotting 𝑎 on the horizontal axis, plot ln(𝑎). Likewise, plot ln(𝑦) on the vertical axis, and if a 
power relationship is the true underlying form, expect a linear pattern to appear. In so-called “log space”, 
ln(𝛽0) is the 𝑦-intercept and 𝛽1 is the slope of the transformed equation. Figure 18 demonstrates the 
power equation in both unit space and the log transformed fit space. 

 

Figure 18: Power Equation in Unit and Fit Space 

The case when the exponent is negative results in a negative correlation. A common case of this in cost 
estimating is CIC analysis, where: −1 <  𝛽1  <  0.36 A CIC is shown in Figure 19. The purpose of this 
section is not to discuss CIC theory, though it is important to note that CICs use a power relationship to 
relate effort to the unit number.  

                                                      

36 In CIC applications, common notation is 𝑦 = 𝑎𝑎𝑏 for the power function where the independent variable is 
quantity. In the case of lot data, the independent variable is the Lot Plot Point (also called the Lot Midpoint).  
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Figure 19: Example Cost Improvement Curve 

2.8.3 Exponential Functional Form 
Exponential Models take one of three equivalent forms: 

𝑦 = 𝛽0𝐴𝛽1𝒙 
= 𝛽0𝑘𝒙 
= 𝛽0(1 + 𝐴)𝒙 

Where: 

𝑦 = estimated cost 
𝛽0= coefficient (multiplicative scaling) 
𝐴𝛽1 = 𝑘 = (1 + 𝐴) =  base of the exponential function 
𝐴 =  rate (percentage change per constant change in 𝑎) 
𝐴 = 2.71828 … (base of the natural logarithm) 
𝑎 =  independent variable (cost driver) 

The three forms of the exponential equation are mathematically equivalent. The first is generally 
preferred when performing regression (which enables solving for 𝛽1 directly). The second is simplest and 
thus easiest for algebraic manipulations. The third is most intuitive and relevant for non-CER cost 
applications, where 𝐴 represents an inflation or interest rate. 

Note the Power Model has a fixed exponent with 𝑎 in the base. Now 𝑎 is in the exponent with a fixed 
base. Exponential models are common in the physical and biological sciences, characterizing exponential 
growth (e.g., populations) and decay (e.g., radioactivity), but in cost estimating efforts they are mostly 
relegated to capturing economic effects over time.  

The exponential equation form also transforms to a linear equation.  

Initial Exponential Equation: 𝑦 = 𝛽0𝐴𝛽1𝑥 

Logarithmic Transformation of the Exponential Equation: ln(𝑦) = ln(𝛽0) + 𝛽1𝑎 



 CER Development Handbook 
 

54 

As with Power, plot ln(𝑦) on the vertical axis, but this time simply plot 𝑎 on the horizontal axis. Again, 
expect a linear pattern to appear; assuming an exponential relationship governs the underlying data. On 
this “semi-log” plot, ln(𝛽0) is the y-intercept and 𝛽1 is the slope of the transformed equation. Figure 20 
illustrates the Exponential Model. 

 
Figure 20: Exponential Functional Form in Unit and Fit Space 

2.8.4 Logarithmic Functional Form 
Logarithmic Models take the form: 

𝑦 = 𝛽0 + 𝛽1 𝑙𝑙 𝑎 

Where, 

𝑦 =  estimated cost 
𝛽0 =  y-intercept (vertical calibration) 
𝛽1 =  coefficient of ln(𝑎) (constant change per percentage change in 𝑎) 
𝑎 =  independent variable (cost driver) 

 
This is the rarest of the main four functional forms in cost estimating. Similar to a Power function with 
0 < 𝛽1 < 1, cost increases at a decreasing rate, but with extreme flattening as it takes an ever larger 
increase in 𝑎 to yield the same amount increase in 𝑦.  

Unlike Power and Exponential, the Logarithmic equation is already in a linear form. However, to see the 
linear pattern, plot the data in semi-log space to perform the fit. Figure 21 illustrates the logarithmic 
form. 



 CER Development Handbook 
 

55 

 

Figure 21: Logarithmic Functional Form in Unit and Fit Space 

2.8.5 Triad Functional Form 
Ordinary Least Squares (OLS) regression handles (at least initially) the four preceding functional forms 
and consistent combinations thereof. However, combining additive and multiplicative relationships 
produces more general functional forms not readily handled by OLS. The simplest and most common of 
these is the triad CER, named after its three parameters: a non-zero 𝑦-intercept, 𝛽0; a multiplicative 
coefficient, 𝛽1; and an exponent, 𝛽2. 

𝑦 = 𝛽0 + 𝛽1𝑎𝛽2  

Where, 

𝑦 =  estimated cost 
𝛽0 =  y-intercept (vertical calibration) 
𝛽1 =  coefficient of 𝑎 (multiplicative scaling) 
𝛽2 =  exponent of 𝑎  
𝑎 =  independent variable (cost driver) 

 
Use of this functional form requires Non-linear Least Squares (NLS), though in some cases, the artful use 
of an additive transformation can preserve the use of OLS (e.g., subtracting off the vertical calibration to 
scale back down to zero). 

2.8.6 More General Functional Forms 
Combining additive and multiplicative relationships produces more general functional forms not readily 
handled by OLS. These forms can take on nearly any shape and therefore are very flexible. As a result, 
they can also be dangerous due to the temptation to “data mine” arbitrary forms with little to no practical 
meaning. Use these forms when the hypothesized relationships require such a non-linear form.  

2.8.7 Caution When Regressing Transformed Data 
CER regression fits are performed in the transformed or fit space. Use the fit space to check model 
assumptions (Section 4.2 Model Assumptions), run model diagnostics (Section 4.3 Model Diagnostics), 
and to check for statistical significance (Section 4.4 Model Significance). However, ascribing meaning to 
the coefficient statistics requires transforming back to, or calculating in, unit space.  
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While transforming the data provides a convenient method for analyzing certain non-linear relationships, 
doing so often has less than desirable implications on a model. The resulting equations are biased (Step 5: 
Characterize Uncertainty) and rarely generate the model with the lowest error in unit space. Alternatives 
to performing OLS on transformed data are provided in 3.3.4 Generalized Linear Model (GLM) or 3.3.5 
Non-linear Least Squares (NLS). 

2.8.8 Error Terms 
The regression process requires the functional form to include an error term, ε. The error term accounts 
for the variation between the fitted functional relationship and an observed, actual value. The regression 
process finds the equation minimizing the error between the actual and predicted dependent values. The 
manner in which this is defined and accomplished is the subject of Step 3: Generate CER. In general, 
there are two distinct choices for an error term: 

• Additive: This error term is most often associated with the linear model; however, this term can 
be associated with any functional form. An additive error term is appropriate if the difference 
between the observed values and the fitted CER is constant over the range of the data. 

• Multiplicative: This error term is often associated with the nonlinear growth models; however, 
this term can be associated with any functional form. A multiplicative error term may be 
appropriate if: 

o The errors are proportional to the dependent variable value.  
o The range of the dependent value spans an order of magnitude or more.  

The choice of the error term should be made independent from the functional form selection. A good 
place to start is with the OLS method, which assumes an additive error term on a linear model.  
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3.0 STEP 3: GENERATE CER 
The goal of Step 3 is to conduct regression analysis to establish the coefficients of the proposed equation 
and calculate associated statistics, using the normalized data. This guide strives to provide examples when 
possible. While MS Excel can implement some of the techniques37, the results for even the most 
simplistic methods, such as Ordinary Least Squares (OLS) as performed by the LINEST() function and 
Data Analysis ToolPak Regression macro, are not sufficient for Step 4: Validate CER. Additionally, more 
advanced non-linear methods require the use of problematic numerical techniques when relying on MS 
Excel’s built in Solver functionality. In those cases, tools such as CO$TAT, R, or SAS JMP are more 
effective and return more detailed statistical results. 

After the analyst completes Step 1: Purpose, Scope, Collect, Validate, & Normalize and Step 2: Analyze 
Normalized Data including hypothesizing the most appropriate form of the equation(s) (2.8 Hypothesize 
Functional Form), CER generation involves the following steps: 

1. Estimate model coefficients using regression and other techniques as appropriate. 
2. Assess and validate the appropriateness of the fit model (Step 4: Validate CER). If unsatisfactory, 

return to item 1, above. 
3. Use the CER to estimate cost and quantify the error using prediction intervals. 

Regression methods described in this handbook include: 
• 3.3.1 Ordinary Least Squares (OLS) 
• 3.3.2 Generalized Least Squares (GLS)  

o 3.3.2.2 Weighted Least Squares (WLS) 
• 3.3.3 Transformable Linear and the Log-Linear Model 
• 3.3.4 Generalized Linear Model (GLM) 
• 3.3.5 Non-linear Least Squares (NLS) 

o 3.3.5.4 Minimum Unbiased Percentage Error (MUPE) 
o 3.3.5.5 Zero Percentage Bias Minimum Percentage Error (ZMPE) 

Figure 22 shows one possible sequence of steps to select a regression method to generate a CER. 

 

                                                      

37 Simple regression forms have closed form solutions that can be solved in matrix algebra in Excel, as well as many 
excellent statistics packages. 
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Figure 22: Step 3: Generate CER 

 A Guide to Regression Methodology Selection 3.1
The flow chart in Figure 22 identifies the DoD recommended approach to determine the best regression 
method for a particular dataset. The sections below summarize properties and ratings of regression 
methodologies from a perspective of the science. The statistical perspective is often the best choice. 
However, there may be valid reasons to override the statistical results due to underlying physics or other 
considerations. 

3.1.1 Using OLS as a Regression Method Baseline 
A fundamental regression methodology is the linear model with a constant, normally distributed error, 
known as OLS. OLS remains the most popular and well-known regression method in cost analysis. For 
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this reason, OLS is the starting point. There are well defined tests on the OLS results to help guide the 
search for a more suitable method when OLS fails to perform.  
There are four basic mathematical assumptions underpinning the use of the OLS model:  

(1) Independence of errors: Errors, 𝜀𝑖, are not related  
(2) Homoscedasticity: Errors, 𝜀𝑖, have constant variance, 𝜎2, across the data range 
(3) Normality: The errors, εi, are normally distributed 
(4) Linearity: The relationship is defined by a constant slope in fit space 

The strategy is to fit OLS and use resulting information to accept the model or diagnose inherent 
problems. Alternative methodologies may mitigate these problems. Table 11 identifies the regression 
methodologies to use when a statistical assumption is violated using OLS. A green check indicates the 
corresponding regression method is an appropriate option. 

Table 11: Summary of Regression Methodologies 

 

Violation of the first assumption (4.2.1.2 Independence of Errors) suggests a time series model, which is 
beyond the scope of the handbook. In cases where there is a “x”, the analyst is recommended not to use 
the identified methodology. The following sections describe how methodologies marked with a check 
mark may overcome the assumption violations. 

3.1.2 Choosing Where to Go When One or More OLS Statistical Assumptions is Violated 
Once valid methodologies have been established to remedy problems with the OLS model, there are 
practical and mathematical properties that help guide the selection of a specific method. Table 12 
summarizes these metrics and brings to light an apparent hierarchy of methodologies. However, when 
OLS fails on one or more of the underlying assumptions, alternatives must be considered: 

• If the only problem with OLS is that the data do not have a constant variance (e.g., multiplicative 
error), then WLS is a good choice. MUPE is a special case of the WLS method. 

• If there is a problem with the normality assumption and/or linearity as well, Log-linear and GLM 
models can be used as a remedy.  

• NLS is the most flexible, but least preferred method due to unfavorable statistical properties. It 
should be used when subject matter expertise drives towards a model form that cannot be fit by 
any other methodology. Use NLS when the hypothesis dictates that this method is the best 
choice. 

Table 12 summarizes the following:  
• Engineering Assumptions: This group of analytical assumptions should be discussed with the 

appropriate subject matter expert prior to model selection.  
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• Mathematical Properties: indicates which results are unbiased and generates solutions with 
minimum error. This section also highlights properties that have exact statistics and uncertainty 
metrics rather than estimated or asymptotic ones. 

• Summary Scorecard38: is a subjective illustration to summarize the ease of use, the ease of 
interpretation, and the statistical properties associated with each methodology. Preferences 
should be for models with simple interpretations and strong statistical properties. 

Table 12: Summary of Methodology Properties 

 

. 

 Select Variable Set 3.2
3.2.1 Value of Prior Information 
Small sample sizes are the norm in defense cost analysis given limited acquisition programs and 
outcomes. Collection of information is further constrained by policy, sensitivity of data, cost, and long-
lead times. Given this backdrop of limited degrees of freedom, any information regarding the values of 
regression parameters, or their relationships to one another, can be valuable in increasing the precision of 
estimates. 

The first step, in using prior (but imperfect) knowledge is assessing the fidelity of the information and its 
potential contribution to the regression equation. Information hopefully represents at least an expected 
value of a parameter, culled from a distribution with a suitably small CV. Ideally, the information fills a 
gap in the knowledge of a parameter whose importance in the regression equation is well established. 

The value of a priori information decreases with sample size. This is because the variances of 
unconstrained estimators generally decrease when adding more observations to the mix. Unfortunately, 
the DoD cost analysis environment may not provide sample sizes that can be demonstrated to meet the 
OLS assumptions defined earlier in this text. Prior information is useful and can be valuable. 

                                                      

38 Add detail regarding where the assessments come from. 
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3.2.2 Overview 
Regression analysis can only provide the answer to the specific question asked. In the context of CER 
Development, the question is generally: What are the best-fit coefficients for an equation relating cost to a 
certain set of independent variables using a certain functional form? Each variable set results in a different 
CER. While this process flow is worded in the singular (“CER”), analysis often requires iteration through 
many different variable sets. 

3.2.3 Dummy Variables 
One reason for using a dummy variable is to potentially differentiate between different types of impacts 
within each categorical group when adequate data are available. When inadequate data exists, data may 
be combined using dummy variables.  
The range and usefulness of the classical regression model 𝒚 = 𝑿𝑿 + 𝜺 is occasionally expanded through 
the inclusion of dummy (also known as categorical, binary, qualitative, or Boolean) variables that may 
represent: 

• Temporal effects (e.g., fleet OPTEMPO during wartime versus peacetime) 
• Spatial effects (e.g., manufacturing labor rates today at different defense firms) 
• Qualitative variables (e.g., nuclear versus non-nuclear propulsion) 
• Broad grouping of quantitative variables (e.g., compensation for active and reserve component 

military members) 

The simplest case to consider is the binary situation where the categorical variable takes on one of two 
values. One example of this is the inclusion or exclusion of a characteristic from data observations. For 
example, a major cost driver on a sea system may be due to nuclear power. A dummy variable with a 
value of 1when nuclear powered and 0 when not nuclear powered could be introduced. The following 
equation relates ship end cost (𝒚), ship displacement (𝒙1), and type of propulsion (𝒙2): 

𝒚 =  𝛽0 + 𝛽1𝒙1 +  𝛽2𝒙2 +  𝜺 

Where, 

𝒙2 = 𝑙𝐴𝐶𝑙𝐴𝑎𝐴 = �1 if nuclear powered
0 otherwise

 

Taking conditional expectations with respect to nuclear and non-nuclear propulsion (fixing at specific 
values of 𝑎2) gives, 

𝐸(𝑌|𝑋2 = 0) =  𝛽0 + 𝛽1𝒙1 
𝐸(𝑌|𝑋2 = 1) = (𝛽0  +  𝛽2) + 𝛽1𝒙1 

This means that 𝛽2 measures the cost impact of using nuclear power. As the left graphic in Figure 23 
shows, this is equivalent to a shift in the regression line holding the slope constant. The 𝑦-intercept 
changes position, either up or down, depending upon the sign of 𝛽2. 

In rare cases, values of a dummy variable may impact only the y-intercept and in other cases may impact 
the y-intercept and the slope. Visual inspection of the data may indicate the need for the following method 
of dummy variable use. The following equation demonstrates the latter case for the same ship propulsion: 
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𝒚 =  𝛽0 + 𝛽1𝒙1 +  𝛽2𝒙2 +  𝛽3𝒙1𝒙2 +  𝜺 

Taking conditional expectations yields, 

𝐸(𝑌|𝑋2 = 0) =  𝛽0 + 𝛽1𝒙1 
𝐸(𝑌|𝑋2 = 1) = (𝛽0  +  𝛽2) + (𝛽1 + 𝛽3)𝒙1 

And so 𝛽3 measures a deviation in slope, shown by the right graphic in Figure 23. 

 
Figure 23: Dummy Variables Linear Example 

When combining groups (or categories) evaluate the individual relationships (graphically and/or 
mathematically) first, before pooling them together using dummy variables. To be more specific, analysts 
should analyze separate regression equations (e.g., 𝒚 =  𝛽0 + 𝛽1𝒙1 +  𝜺 for each group) before choosing a 
reduced model (e.g., 𝒚 =  𝛽0 + 𝛽1𝒙1 +  𝛽2𝒙2 +  𝜺). Also, use either the Chow test or t-test to determine 
whether a reduced model is appropriate.39 

Dummy variables also apply to non-linear forms such as the Power Function (Section 2.8.2). Analogous 
to the linear case, the influence may be on the constant term, the exponent, or the two together. For a CIC 
example, under the pressure of competitive procurement, a previously sole-source firm may shift 
downward its CIC , steepen it, or both.40 The dummy variable in this case is the presence or absence of a 
competitive procurement. Figure 24 illustrates this example. 

                                                      

39 Hu, S. and A. Smith, “Using Dummy Variables in CER Development,” 2014 ICEAA Annual Conference, 
Denver, CO, 10-13 June 2014. 

40 “Analysis of Competitive Procurement of Selected Navy Weapon Systems;” Naval Center for Cost Analysis, 
1990, Dr. Brian Flynn, et al. 

Intercept Change Intercept and Slope Change 
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Figure 24: Dummy Variables CIC Example 

A categorical variable with 𝑎 levels requires 𝑎 − 1 dummy variables. In a previous example, the two 
levels were {𝑙𝐴𝐶𝑙𝐴𝑎𝐴 𝐴𝐶𝑝𝐴𝐴𝐴𝐶, 𝐶𝐴ℎ𝐴𝐴} and therefore one dummy variable was required. Now, suppose a 
categorical variable is used to model class of ship and three categories are required: Carrier, Submarine, 
and Other. This has 𝑎 = 3 levels and would require 𝑎 − 1 = 2 dummy variables: 

𝒙𝑖 = 𝐶𝑎𝐴𝐴𝐶𝐴𝐴 = �1 if carrier
0 otherwise 

𝒙𝑗 = 𝑠𝐴𝑏𝑆𝑎𝐴𝐶𝑙𝐴 = �1 if submarine
0 otherwise  

An observation would either have 𝑎𝑖 = 1 and 𝑎𝑗 = 0 to designate a carrier, 𝑎𝑖 = 0 and 𝑎𝑗 = 1 to 
designate a submarine, or 𝑎𝑖 = 0 and 𝑎𝑗 = 0 to designate other. As a result, categorical variables with 
multiple levels can quickly consume degrees of freedom. Further, there is sometimes an unfortunate 
tendency to try to explain away outliers through the use of dummy variables. Therefore, use dummy 
variables sparingly and judiciously.  

 Regression Methodologies Detail 3.3
Multiple competing components drive the development of CERs including statistical significance, logical 
interpretation of the equation, and availability of quality data. Evaluating cost and deriving CERs often 
involves testing multiple methodologies and selecting the most appropriate model (Section 4.6). 

As previously discussed, potential relationships are first hypothesized using visual analysis such as scatter 
plots (Section 2.6). Regression analysis then develops the “best” possible CERs, or regression models, by 
correlating (not causation) dependent and independent variables.  

The first step in identifying a potential regression methodology is to specify the model being fit. There is 
a dependent variable responding to a set of predictor, or independent, variables and their associated 
coefficients, plus variation or error. While the focus of the following sections will be on practical 
implementation, there are some core notations to introduce upfront. Below is a notational definition, 
which will carry through the remainder of this handbook. 
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The following is the generic regression problem: 

𝑦𝑖 = 𝐶(𝑎1𝑖 , 𝑎2𝑖 , … , 𝑎𝑘𝑖;𝛽0,𝛽1,𝛽2, … ,𝛽𝑘) + 𝜀𝑖  for 𝐶 = 1, … ,𝑙 

Where, 

𝑦𝑖 = the ith observation of the response (dependent) variable 
𝑎𝑗𝑖 = the ith value of the jth predictor (independent) variable for 𝑗 = 1, … , 𝑘 
𝛽𝑗 = the jth coefficient for 𝑗 = 1, … , 𝑘 
𝛽0 = the intercept 
𝜀𝑖 = the random error associated with the ith observation 
𝐶 = function describing the relationship between the predictors and the response  
𝑙 = number of observations  
𝑘 = number of independent variables 

𝐴 =  number of estimated parameters 
or in matrix notation (further defined in Section 3.3.1.3), 

𝒚 = 𝐶(𝑿;𝑿) + 𝜺 

Where, 

𝒚 = the 𝑙 × 1 vector of responses 
𝑿 = the 𝑙 × (𝑘 + 1) matrix of predictors and the constant term 
𝑿 = the (𝑘 + 1) × 1 vector of coefficients 
𝜺 = the 𝑙 × 1 vector of errors  

The classic model estimates independent variables and an intercept term (𝐶. 𝐴., 𝐴 = 𝑘 + 1). However, 
models may not include an intercept term (𝐶. 𝐴., 𝐴 = 𝑘). The Triad Functional Form has two more 
parameters than independent variables (𝐶. 𝐴., 𝐴 = 𝑘 + 2). All of these representations require more 
observations than parameters (𝑙 > 𝐴). 

The regression model estimates each 𝛽𝑗 value and the 𝜀𝑖’s are unknown. Each 𝜀𝑖 is a random value 
reflecting the probabilistic nature of the relationship between 𝑿 and 𝒚. Estimated and predicted values are 
notated with hats, e.g., �̂�𝑗 and 𝜀�̂�. 

The selection of a regression methodology largely depends on the explicit functional form of the 
relationship between 𝑿 and 𝒚, and on the assumed structure of the error term, 𝜺. The most common 
strategy to fit a regression model is that of least squares. This method solves for estimates of the 
coefficients, 𝑿, which minimize a function of the Residual Sum of Squares (RSS), also called Sum of 
Squared Errors (SSE), given a set of model assumptions. The violation of one or more underlying model 
assumptions in cost analysis drives or motivates the use of different regression methodologies. The 
remainder of this section will examine different methods of least squares for implementation in the case 
of different functional forms and error terms, with the exception of 3.3.4 Generalized Linear Model 
(GLM), which is a method of A.4.7.2 Maximum Likelihood Estimation (MLE). 
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3.3.1 Ordinary Least Squares (OLS) 
The most common regression model is OLS, which is discussed in two sections. Section 3.3.1.1 Simple 
Linear Regression (SLR) introduces the model in the single independent variable. Section 3.3.1.3 
Multiple Linear Regression (MLR) takes the principles from the single independent variable case and 
extends them to the multiple independent variables. Section 3.3.1.3 will also introduce the matrix notation 
for more complicated functional forms. Once introduced, the remainder of this handbook will use matrix 
notation. Finally, OLS coefficient estimates can be solved by least squares and are the same as those 
solved by MLE, when model assumptions hold.41 

3.3.1.1 Simple Linear Regression (SLR) 
Closed-form formulas (see Appendix A.4.1) exist to solve for both the coefficient estimates and for all of 
the statistical metrics of interest. The Simple Linear Regression (SLR) model is the simplest functional 
form. Use this method when there is a single independent variable predicting a single dependent variable 
in a linear relationship. SLR provides a reasonable starting place to first understand the importance of a 
prospective predictor variable and to serve as a catalyst for developing alternative, more-sophisticated 
CERs. As a result, when use of a single cost driver is hypothesized, and in the absence of a strong 
assumption about the data, the SLR model serves as an analytical starting place. (Step 4: Validate CER). 
This model has many convenient properties. 

SLR includes an additive error term with the assumption that the errors are independently and normally 
distributed. The normality assumption provides a systematic framework for conducting inference and 
determining significance of the results. The parameters have practical, meaningful interpretations. The 
intercept coefficient, 𝛽0, is the predicted value of the response when the independent variable is zero. 
Only under certain circumstances does this mathematical interpretation make sense in the context of a 
statistical model with prediction properties. The slope coefficient, 𝛽1, is interpreted as the change in the 
response for each positive unit increase in the independent variable.  

Below is the statistical formulation of the classical, normal linear regression model, or SLR model. The 
first part of the statement expresses the response variable, 𝑦, is equal to an intercept parameter, 𝛽0, plus a 
slope parameter, 𝛽1, multiplied by the independent variable, 𝑎, plus random error, 𝜀. The second part of 
the statement indicates the errors are normally distributed, independent from each other, with a mean of 
zero, and the same constant variance of 𝜎2. 

𝑦𝑖 = 𝛽0 + 𝛽1𝑎𝑖 + 𝜀𝑖  where 𝜀𝑖  ~ 𝑁(0,𝜎2) 

This statement explicitly captures the assumptions made when conducting SLR. These assumptions, 
which form the basis of OLS in general, are as follows: 

(1) Independence of errors. Each error, 𝜀𝑖, is not related to any other error term. 
(2) Homoscedasticity. Each error, 𝜀𝑖, has a constant variance, 𝜎2, across the data range. 

                                                      

41 Further, since maximum likelihood estimators are asymptotically unbiased, consistent, and asymptotically 
efficient, these same properties carry over for least squares estimates in the classical normal regression model. 
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(3) Normality. The errors are normally distributed with a mean of zero. 
(4) Linearity. The relationship exhibits a constant slope over the data range. 
(5) Error term. The error is not proportional to the independent variables  

These assumptions are key to using the OLS methodology. Under assumptions (1), (2), and (4), the 
Gauss-Markov theorem states the coefficient estimates solved by OLS are the Best Linear Unbiased 
Estimators (BLUE) of the true parameter values, with the lowest variance (see Section 5.1 Adjust Point 
Estimate). To fit this regression model by method of least squares, find values for 𝛽0 and 𝛽1 which 
minimize the sum of squared errors,42 represented by the following objective function: 

arg min
𝛽0; 𝛽1

�𝜀𝑖2
𝑛

𝑖=1

= arg min
𝛽0; 𝛽1

��𝑦𝑖 − (𝛽0 + 𝛽1𝑎𝑖)�
2

𝑛

𝑖=1

 

Application 

SLR is a very convenient model because the problem has a closed-form solution. Formulas exist for the 
estimated values of the coefficients �̂�0 and �̂�1 as well as for the estimated variance of the error term, 𝜎�2. 
Applying these formulas to the data set produces regression results and relevant outputs. 

The formulas for �̂�0 and �̂�1 are: 

�̂�1 =
∑ (𝑎𝑖 − �̅�)(𝑦𝑖 − 𝑦�)𝑛
𝑖=1
∑ (𝑎𝑖 − �̅�)2𝑛
𝑖=1

,        �̂�0 = 𝑦� − �̅��̂�1 

3.3.1.2 Simple OLS Example 
Consider the Electronics sample data in Table 13 for one independent variable 𝑃𝐶𝑝𝐴𝐴 (𝑘𝑘) and 
dependent variable 𝐶𝐶𝑠𝐴 ($𝑀). 

                                                      

42 The function “arg min” represents the argument of the minimum. This returns the argument, or parameter values, 
which result in the minimum value of the equation. The “min” function returns the minimum value, which in this 
case is the sum of squared errors. 



 CER Development Handbook 
 

67 

Table 13: Simple Linear Model Data Example 

 

CO$TAT is used to fit the SLR model and return the standard outputs, displayed in Figure 25.  

 

Figure 25: Simple Linear Regression Output 

These results may vary in appearance by software package, but all should contain the same basic 
information. In Figure 25, the first table provides basic information about the model, including the 
regression equation. Next is a table of coefficients showing the estimated values for the regression 
equation, standard errors, and t-tests for significance testing. In addition, there are several regression 
statistics including the Standard Error and R-squared. The Analysis of Variance (ANOVA) table provides 
a standard view for significance testing and provides other key diagnostic values specific to the regression 
model. These values are discussed in 4.5 Model Quality.  

Figure 26 shows a scatter plot with 𝑃𝐶𝑝𝐴𝐴 (𝑘𝑘) on the 𝑎-axis and 𝐶𝐶𝑠𝐴 ($𝑀) on the 𝑦-axis and the fit 
regression line going through the data. 
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Figure 26: Simple Linear Regression Model Scatter Plot 

Accepting the CER requires additional analysis. Step 4: Validate CER contains a much more in-depth 
model validation discussion. 

3.3.1.3 Multiple Linear Regression (MLR) 
The Multiple Linear Regression (MLR) model is another simple functional form and a direct extension of 
the simple linear model. This method is recommended when multiple independent variables may predict a 
single dependent variable in a linear relationship. Much like SLR, the true, underlying relationship 
between a dependent variable and multiple explanatory variables is always unknown. MLR provides a 
reasonable starting place to understand the importance of a prospective predictor variable as well as 
serves as a catalyst for developing alternative CERs. When multiple cost drivers are hypothesized, the 
MLR model is recommended as an analytical starting place (Step 4: Validate CER). 

Similar to SLR, the MLR model expresses a linear functional form and assumes a normal additive error 
term. The difference is that the MLR model may include more than one independent variable.43 The 
model has the same convenient properties as SLR along with a closed-form solution (see Appendix A.4.1) 
that allows analysts to solve for coefficient estimates and all other statistical metrics. The assumption of 
normally distributed error terms allows analysts to determine significance of the regression results. The 
MLR model includes an intercept coefficient, 𝛽0, that reflects the predicted value of the response when all 
of the independent variables are zero. However, only under certain circumstances does this mathematical 
interpretation make sense in the context of a statistical model with prediction properties. Each slope 

                                                      

43 It is important to note the MLR model refers to multiple regression, not multivariate regression. The term 
multivariate refers to an analysis of multiple response variables, not predictors. A common example of a 
multivariate analysis in Cost Analysis is the joint modeling of Cost and Schedule. 
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coefficient, 𝛽1,𝛽2, … ,𝛽𝑘, can be interpreted as the change in the response for each positive unit increase 
of the respective predictor when all other predictors are held constant.  

While working with standard algebra is possible for the MLR model, linear algebra and matrix notation 
provide a standard framework with computational advantages for more complex models. Bold font 
denotes matrices and vectors, with matrices represented by capital letters and vectors by lowercase letters. 
The transpose of a matrix or vector is notated with a prime, for example 𝑿′ would be the transpose of 𝑿. 
Similarly, the inverse of 𝑿 is notated as 𝑿−1. 

Below is the statistical formulation of the MLR model in matrix form. This generalization is valid for any 
number of independent variables (𝑘 ≥ 1) and any number of observations (𝑙 > 𝑘 + 1), which makes it 
very convenient to work with. The first part of the statement expresses the response variable, or vector, 𝒚, 
is equal to the matrix of independent variables, 𝑿, multiplied by the coefficient variables, or vector, 𝑿, 
plus some random error, 𝜺. The second part of the statement indicates the assumption that the error term 
is normally distributed with a mean of zero, illustrates constant variance of 𝜎2, and has a covariance of 
zero. 

𝒚 = 𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

Where, 

𝒚 = �
𝑦1
⋮
𝑦𝑛
�
𝑛×1

 𝑿 = �
1 𝑎11 ⋯ 𝑎𝑘1
⋮ ⋮ ⋱ ⋮
1 𝑎1𝑛 ⋯ 𝑎𝑘𝑛

�
𝑛×(𝑘+1)

 𝑿 = �

𝛽0
𝛽1
⋮
𝛽𝑘

�

(𝑘+1)×1

 𝜺 = �
𝜀1
⋮
𝜀𝑛
�
𝑛×1

  

𝑰 is the 𝑙 × 𝑙 identity matrix (a matrix of all zeroes except for ones in the top-left to bottom-right 
diagonal positions). The leading column of ones in the 𝑿 matrix corresponds with the intercept 
coefficient, 𝛽0. 

This statement explicitly captures the assumptions made when conducting MLR. These are the same OLS 
assumptions introduced with SLR: 

(1) Independence of errors. Each error, 𝜀𝑖, is not related to any other error term. 
(2) Homoscedasticity. Each error, 𝜀𝑖, has a constant variance, 𝜎2, across the data range. 
(3) Normality. The errors are normally distributed with a mean of zero. 
(4) Linearity. The relationship exhibits a constant slope over the data range. 
(5) Error term. The error is not proportional to the independent variables  

 

Similar to the SLR model, assumptions (1), (2), and (4), support the Gauss-Markov theorem that states 
coefficient estimates solved by OLS are the Best Linear Unbiased Estimators (BLUE) of the true 
parameter values. To fit this regression model by method of least squares, find values for the coefficient 
vector 𝑿 that minimize the sum of squared errors. The MLR method includes an objective function 
similar to the SLR method and is noted below: 

arg min
𝑿

𝜺′𝜺 = arg min
𝑿

(𝒚 − 𝒚�)′(𝒚 − 𝒚�) 
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= arg min
𝑿

(𝒚 − 𝑿𝑿)′(𝒚 − 𝑿𝑿) 

MLR is a very convenient model because the problem has a closed-form solution. A formula exists for the 
vector of coefficient estimates, 𝑿�, as well as for the estimated variance of the error term, 𝜎�2. Applying 
these formulas to a given data set produces relevant regression results and statistical outputs. 

The formula for 𝑿� is: 

𝑿� = (𝑿′𝑿)−1𝑿′𝒚 

This formula can be evaluated via matrix algebra in MS Excel. 

3.3.1.4 MLR Example 
Consider the same data set as introduced in Section 3.3.1.1 but now with a second independent variable, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, illustrated in Table 14. 

Table 14: Multiple Linear Model Data Example 

 

The matrix math used to apply the MLR model described in the previous section can also be applied using 
MS Excel, as illustrated in Figure 27. This figure provides analysts with the MS Excel formulas reflected  
in columns F, G, and H, that can be used to apply the MLR model to the datasets reflected in columns B, 
C, and D.  
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Figure 27: Multiple Linear Regression Matrix Math 

Figure 28 and Figure 29 illustrate another method of fitting the MLR model and generating relevant 
regression model outputs using CO$TAT. 
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Figure 28: Multiple Linear Regression Output 

These results may vary in appearance by software package, but all should contain the same basic 
information. In Figure 28, the first table provides basic information about the model, including the 
regression equation. Next is a table of coefficients showing the estimated values for the regression 
equation, standard errors, and t-tests for significance testing. This table is followed by several regression 
statistics including Standard Error and R-squared. The next section includes the Analysis of Variance 
(ANOVA) table, which provides key diagnostic values relative to the regression model. The format of the 
results is similar to SLR, but now includes an additional independent variable.  

When the MLR model is used, two additional tables are provided; the first identifies how much of the 
variation is explained by each variable and the second provides the correlation between each of the 
variables. This example includes two independent variables that reflect strong correlation, highlighted in 
red. This correlation table provides analysts with key indicators of potential multicollinearity impacts. 
Section 3.3.6 Ridge Regression provides additional detail regarding methods of addressing models 
potentially affected by multicollinearity. 

Figure 29 shows a scatter plot with the Actual Cost on the x-axis and Predicted Cost on the y-axis, with 
the line 𝑃𝐴𝐴𝐶𝐶𝐶𝐴𝐴𝐶 = 𝐴𝐶𝐴𝐴𝑎𝑙 going through the data. 
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Figure 29: Multiple Linear Regression Model Predicted vs. Actual Plot 

While this example illustrates a positive y-intercept value, models that output a negative y-intercept are 
not uncommon. Section 4.4.2.1 Intercept Term provides additional detail regarding y-intercept validation 
methods. 

Accepting the CER requires additional analysis. Step 4: Validate CER contains a much more in-depth 
model validation discussion.  

3.3.2 Generalized Least Squares (GLS) 
The OLS linear regression model relies on a set of fairly restrictive assumptions concerning the behavior 
of the error term. An alternative model, known as Generalized Least Squares44, or GLS, is considerably 
less restrictive in this respect. GLS retains all of the assumptions of the OLS model (Section 3.3.1 
Ordinary Least Squares (OLS)) except for: 

(1) Independence of errors (Section 4.2.1.2) 
(2) Homoscedasticity (Section 4.2.1.3) 

GLS allows for the possibilities of serial correlation and heteroscedasticity (non-constant variance). The 
model is called “generalized” because it includes other models as special cases.   

 

                                                      

44 “On Least Squares and Linear Combinations of Observations,” Aitken, A. C.; Proceedings of the Royal Statistical 
Society of Edinburgh,” Vol. 55, 1935, pages 42-48. 
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Section 3.3.2.1 introduces the GLS model and Section 3.3.2.2 discusses the Weighted Least Squares 
(WLS) model. WLS is a special case of the GLS model that only allows for a violation of the  
homoscedasticity (2) assumption. 

3.3.2.1 Generalized Least Squares (GLS) 
The Generalized Least Squares (GLS) model takes on the same linear form for 𝐶(𝑿;𝑿) as Multiple 
Linear Regression (MLR) (referred to as OLS). GLS expresses a linear functional form and a normal 
additive error term. However, the assumption that the errors are independently and identically distributed 
as normal is no longer required. Normality of the error term is still an assumption, but now the errors may 
be correlated with each other and/or have non-constant variance.  

Time Series analysis is a common use of the GLS model as well as other scenarios where the 
homoscedasticity assumption fails. Closed-form solutions (Appendix A.4.2) exist for both the coefficient 
estimates and for other relevant statistical metrics. The normality assumption provides a systematic 
framework to determine significance of the results.  

Below is the statistical formulation of the GLS model. The first part of the statement expresses that the 
response variable, or vector, 𝒚, is equal to the matrix of independent variables, 𝑿, multiplied by the 
coefficient variables, or vector, 𝑿, plus random error, 𝜺. The second part of the statement indicates the 
assumption that the error term is normally distributed with a mean of zero, and with covariance matrix 𝚺. 

𝒚 = 𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝚺) 

This statement captures the assumptions made when conducting GLS and reflects similar assumptions 
introduced with OLS. The covariance matrix, 𝚺, is used to standardize the residual errors, removing their 
correlation and scaling to the same variance. The GLS model includes the following assumptions: 

 
(1) Independence of errors. Each error, 𝜀𝑖, is not related to any other error term. 
(2) Homoscedasticity. Each error, 𝜀𝑖, has a constant variance, 𝜎2, across the data range.  
(3) Normality. The errors are normally distributed with a mean of zero. 
(4) Linearity. The relationship exhibits a constant slope over the data range. 
(5) Error term. The error is not proportional to the independent variables  

Similar to OLS, under assumptions (1), (2), and (4), the Gauss-Markov theorem states that the coefficient 
estimates solved by GLS are the Best Linear Unbiased Estimators (BLUE) of the true parameter values. 
However, this assertion is only true when 𝚺 is known. The GLS model has the added complexity that 𝚺 is 
almost always unknown.  

When the errors have correlation, an estimate of the covariance structure is required. Additionally, when 
the errors have non-constant variance, or heteroscedasticity, an estimate of the errors is required. Once 𝚺 
is estimated, under assumptions (1), (2), and (4), the Gauss-Markov theorem states that the coefficient 
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estimates solved by GLS are the Estimated Best Linear Unbiased Estimators (EBLUE) of the true 
parameter values.  

To fit this regression model by method of least squares, find values for the coefficient vector 𝑿, which 
minimize a similar objective, function to that of OLS, but now on the standardized, or Mahalanobis45 
distance. Note that when the correlation matrix is (or is proportional to) the identity matrix, 𝑰 (or 𝜎2𝑰), 
then the objective function reduces to that of OLS. 

arg min
𝑿

𝜺′𝚺−1𝜺 = arg min
𝑿

(𝒚 − 𝑿𝑿)′𝚺−1(𝒚 − 𝑿𝑿) 

GLS is a convenient model because the problem has a closed-form solution. A formula exists for the 
coefficient estimates, 𝑿, as well as for the estimated variance of the standardized error term, 𝜎�2. 
However, there is now the added complexity of having to estimate the covariance matrix prior to applying 
these formulas. Any selected covariance matrix will provide a valid (unbiased and consistent) estimator, 
but not necessarily with minimum variance. Once 𝚺 is estimated, formulas can be directly applied to the 
data set.  

Several statistical software packages include the capability to automatically produce relevant regression 
results and diagnostics. As previously mentioned, the most common use of GLS is to correct for 
heteroscedasticity impacts or analyze Time Series datasets. While GLS represents one method of Time 
Series data analysis, the topic is beyond the scope of this handbook.  

The formula for 𝑿� is: 

𝑿� = (𝑿′𝚺−1𝑿)−1𝑿′𝚺−1𝒚 

3.3.2.2 Weighted Least Squares (WLS) 
The Weighted Least Squares (WLS) model is a special case of GLS used to address heteroscedasticity 
impacts. While WLS does not allow for correlation of the errors, it does allow for non-constant variance. 
The violation of the OLS homoscedasticity assumption often motivates the use of WLS and is further 
discussed in Section 4.2.1.3. Closed-form solutions (see Appendix A.4.2) exist to solve for coefficient 
estimates as well as for other statistical metrics of interest. The normality assumption provides a 
systematic framework to determine significance of the results. 

One common use of WLS is the linear model with multiplicative error. This example is a special case of 
WLS, where the model has non-constant variance that is proportional in magnitude to the response 

                                                      

45 The Mahalanobis distance accounts for distance and direction. For example, the number of standard deviations a 
point is away from the center of mass of an ellipsoid. 
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variable. Despite the fact that the error appears multiplicative, another form of the WLS model includes 
an additive error term.46 

Below is the statistical formulation of the WLS model. The first part of the statement expresses that the 
response variable, or vector, 𝒚, is equal to the matrix of independent variables, 𝑿, multiplied by the 
coefficient variables, or vector, 𝑿, plus error, 𝜺. The second part of the statement indicates the assumption 
that the error term is normally distributed with a mean of zero, and with covariance matrix, 𝚺.  

In WLS, 𝚺 has the restriction that the diagonal entries47 must all be greater than zero, and the off-
diagonals must all be equal to zero. The notation 𝑾 = 𝚺−1 allows for a more practical meaning of these 
diagonal entries. Once inverted, these diagonal entries are referred to as the vector of weights (inclusive 
of 𝜎2), 𝒘, and the covariance matrix can be notated as 𝚺−1 = 𝑾 = 〈𝒘〉. The optimal weights are the 
reciprocals of each error’s variance. However, these are rarely known values and require an intermediary 
estimation step in order to fit the WLS model. 

𝒚 = 𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝑾−1) and 𝑾 = 〈𝒘〉 

The formula above captures the assumptions made when using the WLS model. These are similar 
assumptions introduced with OLS. The weight matrix, 𝑾, is used to standardize the residual errors 
scaling them to have the same variance. This topic is further discussed in Section 4.2.2 Weighted Least 
Squares (WLS)).  The WLS model is based on the following assumptions: 

(1) Independence of errors. Each error, 𝜀𝑖, is not related to any other error term. 
(2) Homoscedasticity. Each error, 𝜀𝑖, has a constant variance, 𝜎2, across the data range.  
(3) Normality. The errors are normally distributed with a mean of zero. 
(4) Linearity. The relationship exhibits a constant slope over the data range. 
(5) Error term. The error is not proportional to the independent variables  

Similar to OLS, under assumptions (1), (2), and (4), the Gauss-Markov theorem states that the coefficient 
estimates solved by WLS are the Best Linear Unbiased Estimators (BLUE) of the true parameter values. 
However, this assertion is only true when 𝑾 is known. The WLS model has the added complexity that the 
weight vector, 𝑾, is rarely known and an estimate of the errors is required.  

Once 𝑾 is estimated, under assumptions (1), (2), and (4), the Gauss-Markov theorem states that the 
coefficient estimates solved by WLS are the Estimated Best Linear Unbiased Estimators (EBLUE) of the 
true parameter values. To fit this regression model by method of least squares, find values for the 

                                                      

46 This is a deviation from the multiplicative error representation of 𝒚 = 𝑿𝑿𝜺 seen in some publications. MUPE and 
ZMPE are two specific methods for solving this problem. The reference in Appendix 0 ZMPE contains key 
information on both methods and recommends use of the MUPE method. In the linear model, MUPE is equivalent 
to an iterative application of WLS, aptly named Iteratively Reweighted Least Squares (IRLS). IRLS is covered later 
in this section, as well as in Section 3.3.5 Non-linear Least Squares (NLS) for the non-linear application. 
47 The term “diagonals” refers to the diagonal entries in a square matrix from the top-left to the bottom-right 
diagonal positions. These are the positions of the ones in the identity matrix. 
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coefficient vector 𝑿, which minimize a similar objective function to that of OLS. Note that when all the 
weights are the same, the objective function reduces to that of OLS. 

arg min
𝑿

𝜺′𝜮−1𝜺 = arg min
𝑿

(𝒚 − 𝑿𝑿)′𝑾(𝒚 − 𝑿𝑿) 

WLS has the added complexity that the vector of weights, 𝒘, must be estimated prior to applying the 
objective formula. Statistical software packages can be used to automatically produce the relevant 
regression results and diagnostics, and in some cases even estimate the weight vector automatically. There 
are many strategies for estimating 𝒘, but no perfect solution (refer to Section 4.5 Model Quality for 
additional information). The following are several common strategies for estimating the weight vector: 

Method 1: Run the OLS model and use the squared reciprocal of the residuals as the weights. 

𝑿�𝑂𝑂𝑂 = coefficients derived from OLS 

𝒆𝑂𝑂𝑂 = 𝒚 − 𝒚� 
          = 𝒚 − 𝑿𝑿�𝑂𝑂𝑂 

𝒘 =
1

𝒆𝑂𝑂𝑂2  

Method 2: Use the squared reciprocal of an independent variable. 

𝒘 =
1
𝒙𝑗2

 

Method 3: Use the squared reciprocal of the response variable. 

𝒘 =
1
𝒚2

 

Method 4: This method attempts to minimize the relative residual sum of square error (i.e., 
percentage error), relative to the actual values48 by changing 𝒘. 

𝑃𝐸 =
𝒚 − 𝒚�
𝒚

 

Method 5: Run the MUPE algorithm in CO$TAT. In the linear model setting, MUPE produces a set 
of weights and returns statistical results under the WLS framework. MUPE is utilizing a non-
linear methodology to minimize the relative residual sum of squares (i.e., percentage error 
(%Error)), relative to the predicted values, 

                                                      

48 Tofallis, Chris (2008) "Least Squares Percentage Regression," Journal of Modern Applied Statistical Methods: 
Vol. 7: Iss. 2, Article 18. 
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𝑃𝐸 =
𝒚 − 𝒚�
𝒚�

 

MUPE is iteratively reweighting the model. Starting with 𝒘 = 𝟏 (i.e., the OLS estimator), 
MUPE iteratively fits a WLS model using the reciprocal of the squared predicted values of 
the previous iteration as the current weighting vector. This repeats until the coefficient 
estimates converge within a user specified tolerance limit and is known as iteratively 
reweighted least squares (IRLS).49 The weight vector at a given iteration step 𝛾 is expressed 
as, 

𝒘𝛾 =
1

𝒚�𝛾−12  

After estimating the weights, WLS becomes a very convenient model because the problem has a closed-
form solution for the linear model. A formula exists for the coefficient estimates, 𝑿�, and for the estimated 
variance of the error term, 𝜎�2. Directly applying these formulas to the data set, or utilizing statistical 
software, produces the regression results and relevant outputs. 

The formula for 𝑿� is: 

𝑿� = (𝑿′𝑾𝑿)−1𝑿′𝑾𝒚 

Consider the electronics data set with the independent variable 𝑃𝐶𝑝𝐴𝐴 (𝑘𝑘) and dependent variable 
𝐶𝐶𝑠𝐴 ($𝐾), shown in Table 15 along with the weights for all four methods. Iteratively weighted methods 
change weight values at each iteration. Thus, the weights presented for Method 5, MUPE, are from the 
final iteration (i.e., the final set of weights used in the actual model). 

Table 15: Weighted Linear Squares Data Example 

 

                                                      

49 This is a common definition of iteratively reweighted least squares (IRLS). However, IRLS can also be conducted 
under different weighting methodologies, such as using Method 1 at each iteration. 
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Figure 30 shows actual values compared to the predicted value of each model noted in Table 15. Data 
appearing to have non-constant variance in a multiplicative pattern suggest the applicability of a weighted 
least squares approach. That is not the case in the example shown in Figure 30. 

 

Figure 30: Weighted Least Squares Scatter Plot 

This example illustrates results that are very difficult to discern between the different weighting methods 
shown in Table 15. This is expected. The different sets of weights in WLS often result in very similar 
point estimates. However, they have different variances and therefore different uncertainties around the 
estimate (discussed in Section 5.0: Step 5: Characterize Uncertainty). 

The statistical output for each method will be similar to OLS outputs, as shown in the examples of 
Section 3.3.1 Ordinary Least Squares (OLS). For example, Figure 31 illustrates a statistical output for 
Method 3 using CO$TAT. 
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Figure 31: Weighted Least Squares Regression Output 

Table 16 provides a summary of selected outputs and model fit statistics, such as intercept, slope, and 
R2Adj. SE and MAD50 illustrate that all methods return a similar level of accuracy. 

Table 16: Example WLS Methodology Comparison 

 

Recalling that OLS minimizes the SSE in unit space, the 𝑅2 value in unit space for WLS cannot be better 
than the OLS estimator. MAD is defined as the mean absolute deviation, which is then converted to a 
percentage by dividing by the number of observations,𝑙.  

Accepting the CER requires additional analysis. Step 4: Validate CER discusses the process of using 
statistical outputs to select the most appropriate model. 

                                                      

50 MAD = Mean Absolute Deviation. Measures the average percentage by which the regression overestimates or 
underestimates the observed actual value. 
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3.3.3 Transformable Linear and the Log-Linear Model 
3.3.3.1 Overview 
The use of a variable transformation can remedy certain assumption violations of the Ordinary Least 
Squares (OLS) model. CERs violating homoscedasticity (Section 4.2.1.3), normality of errors (Section 
4.2.1.4), or linearity (Section 4.2.1.5 Linearity) can sometimes be corrected by applying a transformation. 
Figure 32 displays just a few of the many possible transformations for which the resulting equation is 
linear in the parameters, and therefore can be estimated using Ordinary Least Squares (OLS). However, 
for the purposes of this section, the term ‘transform’ will refer to the Log-Linear model. 

 
Figure 32: Common Linear Transformations 

– Terminology – 

The “Double-log” transformation in Figure 32 is often referred to as Log Ordinary Least Squares 
(LOLS) regression. 

Transformations are simple to implement, but they produce a regression optimized in the transformed (or 
fit) space, not in the unit space51. Transformations can lead to unexpected results including biased 
coefficient estimators and models without minimal variance in unit space. Additionally, transformations 
remain useful for variables illustrating non-linear trends. 

The Log-Linear model is any functional form of a linear model in the transformed space after taking the 
logarithm, usually base 𝐴, of both sides of the equation. Since log transforms turn multiplication into 
addition, and the normal distribution into the lognormal distribution, a lognormal model assumes a 

                                                      

51 Appendix B Maximum likelihood estimation for Regression of Log Normal error (MRLN) Summary provides 
additional background on the popularity behind Log Ordinary Least Squares (LOLS) regression and motivation for 
the log-normal error term. 
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multiplicative lognormal error term in unit space. This translates into an additive normal error term in the 
transformed space, making the model a candidate for OLS.  

When using Log-Linear transformation, model selection based on minimal variance in unit space is 
unlikely. Further, some of the coefficients when transformed back into unit space from the transform 
space are biased (See Step 5: Characterize Uncertainty for a brief discussion on bias). 

While there are many transformations to make the model linear, the focus of this section will be on the 
two most common models: the 2.8.2 Power Functional Form and 2.8.3 Exponential Functional Form. The 
concepts introduced for these two cases translate directly to other related transformable forms, such as 
those with multiple independent variables. 

Below is the mathematical formulation for the Exponential Model. The error term is now multiplied by, 
not added to, the model equation. 

 𝒚 = 𝛽0𝐴𝒙𝛽1𝐴𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

By applying the natural log transform, the equation transforms to, 

𝑙𝑙(𝒚) = 𝑙𝑙(𝛽0) + 𝛽1𝒙 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

Substitutions give an identical form to OLS, 

𝒚∗ = 𝛽0∗ + 𝛽1𝒙 + 𝜺 where 𝜺 ~ 𝑁�𝟎,𝝈𝟐𝑰� 

Where,  

 𝒚∗ = 𝑙𝑙 (𝒚) 
𝛽0∗ = 𝑙𝑙 (𝛽0) 

A similar transformation can be applied to the Power Model. 

𝒚 = 𝛽0𝒙𝛽1𝐴𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

By applying the natural log transform to each side of the equation, the equation transforms to, 

𝑙𝑙(𝒚) = 𝑙𝑙(𝛽0) + 𝛽1 𝑙𝑙(𝒙) + 𝜺where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

Substitution again provides an identical form to OLS, 

𝒚∗ = 𝛽0∗ + 𝛽1𝒙∗ + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

Where, 

 𝒚∗ = 𝑙𝑙(𝒚) 
𝒙∗ = 𝑙𝑙(𝒙) 
𝛽0∗ = 𝑙𝑙 (𝛽0) 

The assumptions for the Log-Linear model in the transform space are the same as the OLS assumptions 
(Section 5.2.1). The constant variance assumption in the transform space translates back to a constant CV 
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in unit space. The normal error in the transform space, 𝜺 ~ 𝑁(𝟎,𝜎2𝑰), implies 𝐴𝜺~𝐿𝑁(𝟎,𝜎2𝑰). This 

lognormal distribution has a CV of �𝐴𝜎2 − 1. Since the variance of the assumed additive normal error 
term in log space, 𝜎2, is constant, so is the CV in unit space throughout the data range. 

3.3.3.2 Applying the LOLS Model 
The Log-Linear model is a very convenient model because the problem has a closed-form solution. The 
OLS formulas are used for the log space coefficient estimates, 𝑿�∗, and to estimate the variance of the 
error term, 𝜎�2. Applying these formulas to the data set, or utilizing statistical software, will produce the 
relevant regression outputs.  

Unfortunately, the OLS estimator of 𝛽0∗ fit in log space yields a biased estimate of the parameter 𝛽0 when 
transformed back into unit space. Methods exist to quantify and adjust for this bias by applying a factor. 
Two methods are the Goldberger factor and the PING factor (Appendix A.4.3.1 Mean Shift)52. However, 
both methods are approximations and neither performs particularly well outside of the data range 
(extrapolation). With modern computing and software applications, analysts are recommended to fit the 
model in unit space rather than transform the coefficients and attempt to apply an adjustment factor.  

Hu, 2005, studied this recommendation and resulted to using the MUPE (see 3.3.5.4 Minimum Unbiased 
Percentage Error (MUPE)) methodology instead of the Log-Linear model. In addition, a maximum 
likelihood (MLE) approach applied to the log-linear model is possible. This methodology is discussed in 
Appendix B Maximum likelihood estimation for Regression of Log Normal error (MRLN) Summary. 

A further generalization is the recommendation of treating non-linear models as just that, non-linear 
models, rather than transforming for the mathematical convenience of OLS. Some non-linear methods are 
discussed briefly in Section 3.3.4 Generalized Linear Model (GLM) and in more detail in Section 3.3.5 
Non-linear Least Squares (NLS). 

3.3.3.3 LOLS Example 
Consider the sample data in Table 17 for one independent variable (𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 (𝑘𝑘𝐴𝐴𝐴𝐶𝑆2) and the 
dependent variable 𝐶𝐶𝑠𝐴 (𝐹𝑌16$𝐾).  

                                                      

52 Hu, 2005 demonstrates improved performance of the PING factor over the Goldberger factor outside of the data 
range (i.e., when extrapolating). 
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Table 17: Power Model Data Example 

  

After viewing a scatter plot of the data, CO$TAT is used to fit the Power Model, 𝒚 = 𝛽0𝒙𝛽1 ∙ 𝐴, by 
conducting OLS regression on the data that is transformed for both 𝒚 = 𝐶𝐶𝑠𝐴 ($𝐾) and 𝒙 =
𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 (𝑘𝑘𝐴𝐴𝐴𝐶𝑆2). Figure 33 and Figure 34 display the regression outputs. 

 

Figure 33: Log-Linear Regression Model Scatter Plot 
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Figure 34: Log-Linear Regression Output 

These results may vary in appearance by software package, but all should contain the same basic 
information. Figure 33 shows a scatter plot with 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 on the 𝑎-axis and 𝐶𝐶𝑠𝐴 on the 𝑦-axis, with the 
fit regression curve going through the data. The results displayed in Figure 34 are identical to those of 
OLS, but now represent the variables in the transformed space. The first table of coefficients is a standard 
output showing the estimated values for the regression equation, standard errors, and t-tests for 
significance. This is the model in the transform space, with both Cost and Intensity transformed. Recall 
that the model is solving for 𝛽0′ = log (𝛽0). Thus, the regression equation in the transform space is, 

𝐶𝐶𝑠𝐴′ = 5.8183 + 0.9006 ∙ 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦′ 

Therefore, the Power Model in unit space becomes, 

𝐶𝐶𝑠𝐴 = 𝐴5.8183 ∙ 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦0.9006 
= 336.4 ∙ 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦0.9006 

Figure 34 also shows several regression statistics that are common to OLS such as the Standard Error, R-
squared, and the F-statistic. The final table is the Analysis of Variance (ANOVA) table, which is a 
standard view for significance and provides key diagnostic values relative to the regression model. Some 
statistical packages also provide results in unit space. 

Accepting the CER requires additional analysis. Step 4: Validate CER discusses the process of using 
statistical outputs to select the most appropriate model. 

3.3.4 Generalized Linear Model (GLM) 
Methods of least squares, such as 3.3.1 Ordinary Least Squares (OLS) and 3.3.2 Generalized Least 
Squares (GLS) can be fairly restrictive as both methods depend on a normal error distribution and operate 
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by minimizing the model’s sum of squared error term. A Generalized Linear Model (GLM) is a 
generalization of the standard linear model allowing for non-normal error distributions (see Section 
4.2.1.4 Normality of Errors), and limited non-linear function forms (see Section 4.2.1.5 Linearity), such 
as 2.8.2 Power Functional Form and 2.8.3 Exponential Functional Form.  

GLM expresses a response whose mean is a function of a linear predictor, and an additive error term that 
follows a distribution belonging to the exponential family (Appendix A.2.2.3). The model has many 
convenient properties analogous to those of OLS, but with added complexities. To accommodate non-
normal error distributions, GLM utilizes Maximum Likelihood Estimation (MLE) (Appendix A.4.7.2). 
The error distribution assumption provides a systematic framework to determine significance of the 
results.  

However, the coefficient estimates typically do not have a closed-form solution. Solving for the 
coefficients by maximizing the likelihood function of the model requires an algorithm that is included in 
many statistical software packages. Under certain conditions, statistical inference properties of the GLM 
are preferable to those of both the 3.3.3 Transformable Linear and the Log-Linear Model and 3.3.5 Non-
linear Least Squares (NLS) forms.  

There are several applications of GLM used to solve for specialized regression models. Binary response 
variables are predicted using logistic regression. Count data are often modeled using Poisson regression. 
While beyond the scope of this guide, both are common enough to warrant awareness. Of particular 
interest to CER construction, GLM provides the flexibility to directly fit a lognormal error term (or 
approximation of) and power and exponential models without having to first transform the data.53 

The GLM is an advanced tool in the CER toolbox and is further described in Appendix A.4.4 Generalized 
Linear Model (GLM). 

While not a GLM, other methods do use the MLE approach. Specifically, a MLE approach directly 
applicable to the log-linear model (without the need for an approximation) is possible. This methodology 
is discussed in Appendix B Maximum likelihood estimation for Regression of Log Normal error (MRLN) 
Summary. 

3.3.5 Non-linear Least Squares (NLS) 
3.3.5.1 Overview 
The models presented in earlier sections all rely on their own respective sets of fairly restrictive 
assumptions concerning the behavior of the error term and the functional form of the model. There are 
many scenarios where these assumptions are either violated by the data or simply not realistic from an 
engineering / subject matter expert perspective. When these assumptions are violated, Non-linear Least 
Squares (NLS) can be used as a last resort methodology.  

                                                      

53 In practice, gamma regression is a more common approach. The log-normal distribution can be approximated by 
certain parameterizations of the gamma distribution. Many properties are shared, but mathematically the gamma 
distribution is more convenient to work with. 
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NLS allows for any functional form of the model (Section 4.2.5), including “additive” or “multiplicative” 
assumptions on the error term. A common example of a NLS form is the triad model, introduced in 
Section 2.8.5. This form arises in the “fixed-cost” CIC application, where the cost data are assumed to 
include fixed costs, which do not decrease over time. This form provides the analyst with flexibility and 
can be used to fit nearly any functional form to the data. However, NLS does not provide the desired 
statistical properties similar to other regression methods. As a result, use NLS as a last resort 
methodology. 

– Terminology – 

Non-linear Least Squares (NLS) is common terminology for the regression methodology of using 
numerical methods to minimize some error term (objective function) for any desired functional form and 
error term combination. This has also been called  “General Error Regression Methodologies” 
(GERM.). GERM is essentially an NLS method. “ZMPE,” a special case of GERM  includes a constraint 
(sum of percent errors is zero), is discussed in 3.3.5.5 Zero Percentage Bias Minimum Percentage Error 
(ZMPE).  

Non-linear models remain an area of heavy research in the statistics community and many, if not all, of 
the convenient properties of the preceding methods are lost. Nearly any functional form is possible and 
methods for handling correlated and non-constant errors of many different distributions exist. Recall the 
normal distribution of errors assumption is required only for inference when utilizing a least squares 
method.  

Below is the general statistical formulation of the NLS model. The first part of the statement expresses the 
dependent variable, or vector, 𝒚, is equal to a function of the independent variables, 𝑿, and the coefficient 
variables, or vector, 𝑿, plus random error, 𝜺. The second part of the statement indicates the error term is 
assumed to be normally distributed with a mean of zero, and with covariance matrix, 𝚺. One example of a 
common non-linear form is referred to as the “triad model” (introduced in Section 2.8.5), where 
𝐶(𝑿;𝑿) = �𝛽0 + 𝛽1𝒙𝛽2� + 𝜺. 

For the purposes of this guide, 𝚺 has the same restriction as introduced in Section 3.3.2.2 Weighted Least 
Squares (WLS), that the diagonal entries must all be greater than zero, and the off-diagonals must all be 
equal to zero. The reciprocal of these diagonal entries are frequently referred to as the vector of weights, 
𝒘, and the covariance matrix can be notated as 𝚺 = 〈𝒘−1〉. In the context of the non-linear model, a 
common approach is the method of Iteratively Reweighted Least Squares (Appendix A.4.7.1), which 
iteratively selects and adjust these weights automatically when fitting the NLS model. This process is 
nearly identical to that covered under WLS Method 4, using the previous iterations predicted values to 
weight the residuals of the current iteration. This is the basis of the MUPE algorithm (3.3.5.4 Minimum 
Unbiased Percentage Error (MUPE)). However, weighting of the residuals is not required in order to run 
this method (i.e., 𝚺 = 𝜎2𝑰), thus minimizing standard “additive error.” 

𝒚 = 𝐶(𝑿;𝑿) + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝚺) and 𝚺 = 〈𝒘−1〉 

This statement explicitly captures the assumptions made when conducting NLS. These are the same four 
assumptions introduced with OLS, but with significant modifications. The covariance matrix, 𝚺, is used to 
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standardize the residual errors, scaling the errors to have the same variance. Similar assumptions to OLS 
apply to these standardized data: 

(1) Independence of errors. Each error, 𝜀𝑖, is not related to any other error term. 
(2) Homoscedasticity. Each error, 𝜀𝑖, has a constant variance, 𝜎2, across the data range. 
(3) Normality. The errors are normally distributed with a mean of zero. 
(4) Functional Form. The statement of the functional form is an assumption on the type of 

appropriate modeling function for 𝒚. 

Under the assumptions, the results of NLS are asymptotic, meaning that the coefficients are optimal in a 
large sample. In order to fit this regression model using the least squares method, values for the 
coefficient vector 𝑿 use the equation below. 

arg min
𝑿

𝜺′𝚺−1𝜺 = arg min
𝑿

(𝒚 − 𝐶(𝑿;𝑿))′𝚺−1(𝒚 − 𝐶(𝑿;𝑿)) 

3.3.5.2 Application of NLS 
NLS does not have a closed-form solution. Numerical optimization methods are required to generate 
coefficient estimates. These methods are generally reliable, though the concept of a local versus global 
solution now requires consideration. Typically, non-linear optimization methods involve search methods 
or variations on methods of steepest descent. These methods commonly start with an initial “guess” for 
the optimal solution of the function and use the derivative (or approximations thereof) to iterate closer to 
the solution. Unfortunately, this raises the possibility that the method provides a locally optimal solution 
when a globally optimal solution is more desirable. As a result, the solution provided by these methods 
has the potential to be highly influenced by both the starting value(s) of the algorithm and by the 
optimization function. 

Consider the plot of the function in Figure 35. Note how the three different initial conditions (circles) lead 
to three different minimal values (diamonds). In this case, the red initial values (two circles on the right) 
arrive at local minimum values while the green initial value (circle on the left) arrives at the global 
minimum value. The functional forms used in NLS models have the potential to lead to similar situations. 
In these cases, different initialized values for 𝑿 could result in different final estimates for the model 
coefficients, 𝑿�.  

 
Figure 35: Local versus Global Solution 
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In practice, generating coefficients involves minimizing the error term for the regression. Unconstrained 
optimization involves the minimization of functions with no restrictions on the value of the independent 
variables. In most cases of regression, unconstrained non-linear optimization techniques are the most 
relevant. However, there are special cases where constraints upon the independent variables are required 
(Section 3.4 Estimation with Prior Information).  The independent variables that minimize the errors are 
the parameters of the regression function (𝑿), and not the independent variables of the regression equation 
(𝑿). 

Most numeric methods of continuous non-linear optimization involve iterative methods. In these 
methods, each step improves upon the solution from the previous step, bringing the final solution closer 
to the optimum and termination of the algorithm. In the case of minimizing a sum of squared errors term, 
the Levenberg-Marquardt (sometimes referred to as Modified Marquardt) algorithm is often the method 
of choice. There are cases when a more robust but less efficient downhill simplex (Nelder-Mead) method 
may be preferred.  

One strategy for complex functions would be to use the Levenberg-Marquardt method first. If the 
software package has difficulty converging using the Levenberg-Marquardt method, recommend trying 
the downhill simplex method. Many statistical software packages54 allow for a custom model 
specification, and automatically run the algorithm to produce the regression results and relevant 
diagnostics.  

3.3.5.3 NLS Example 
Consider the same sample data introduced in Section 3.3.3 Transformable Linear and the Log-Linear 
Model in Table 17 for one independent variable 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 (𝑘𝑘𝐴𝐴𝐴𝐶𝑆2) and dependent 
variable 𝐶𝐶𝑠𝐴 ($𝑀). After viewing a scatter plot of the data, a Triad Model, 𝒚 = 𝛽0 + 𝛽1𝒙𝛽2 + 𝜺, is fit to 
the data. Using CO$TAT, the NLS regression analysis is conducted using the Levenberg-Marquardt 
algorithm by default (Downhill Simplex and Gauss Newton are also available) and standard outputs are 
returned, displayed in Figure 36 and Figure 37. In this example, the additive error is minimized. If there 
are concerns that the variance may be non-constant, other methods may be used (e.g., IRLS, MUPE, 
WLS, etc.). 

                                                      

54 See Appendix A.4.5.1 for use of the CO$TAT software package and Appendix A.4.5.2 for use of Excel for NLS 
modeling. ACEIT makes use of language and methodologies similar to the NLS argument presented here, but under 
more cost analysis unique language (Section 0 General Error Regression Models (GERM)). Use of Excel solver has 
many cautions and is a methodology for the expert user. 
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Figure 36: NLS Regression Model Scatter Plot 

  
Figure 37: NLS Regression Output 

Figure 36 shows a common visual plotting 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 (𝑘𝑘𝐴𝐴𝐴𝐶𝑆2) on the 𝑎-axis and 𝐶𝐶𝑠𝐴 ($𝐾) on the 
𝑦-axis, with the fit regression points superimposed on the data. The results displayed in Figure 37 are 
now distinctly different to those of OLS. The first table of coefficients depicts the estimated values for the 
regression equation and the approximate standard errors, and t-tests for significance. 
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Next, there are several common regression statistics such as the approximate R-squared and the Standard 
Error (SE). Many metrics relevant in the linear model are no longer applicable in the non-linear setting 
such as an ANOVA table. Statistical results produced from the NLS model are used less frequently for 
comparison. 

However, in situations where a CER can only be fit via NLS or engineering judgment, NLS may be 
preferred. Be sure to consider other options when OLS fails. 

Accepting the CER requires additional analysis. Step 4: Validate CER discusses the process of using 
statistical outputs to select the most appropriate model. 

3.3.5.4 Minimum Unbiased Percentage Error (MUPE) 

– Terminology – 

MUPE as a whole is a broad methodology that uses iteratively reweighted least squares (IRLS) to 
minimize an objective function where the variance of the dependent variable is not a constant. This 
concept directly applies to non-linear models. 

The MUPE methodology is a specific case of NLS, which minimizes a multiplicative error model. This 
approach is applied as a modifier to the Levenberg-Marquardt algorithm. The model weights are derived 
using the process described in Section 3.3.2.2 Weighted Least Squares (WLS). All properties, 
assumptions, formulas, equations, and caveats discussed in Section 3.3.5 continue to be applicable. 

MUPE is utilizing a non-linear methodology to minimize the relative residual sum of squares (i.e., 
percentage error (Percent Error [PE])), defined relative to the predicted values, 

𝑃𝐸 =
𝑦 − 𝑦�
𝑦�

  

Starting with w=1 (i.e., the additive NLS estimator), MUPE iteratively fits a NLS model using the 
squared predicted values of the previous iteration as the current weighting vector. This repeats until the 
coefficient estimates converge within a specified tolerance limit, known as iteratively reweighted least 
squares (IRLS). The weight vector at a given iteration step γ is expressed as, 

𝑝𝑦 =
1

𝑦�𝑟−12   

3.3.5.5 Zero Percentage Bias Minimum Percentage Error (ZMPE) 
The ZMPE methodology is a constrained minimization process that can be applied to a linear or non-
linear functional form. ZMPE minimizes a multiplicative error model and can be broken down into two 
components: the Zero Percentage Bias component and the Minimum Percentage Error component. Much 
like MUPE, ZMPE is utilizing a non-linear methodology to minimize the residual sum of squares relative 
to the predicted values, 

• Zero Percentage Bias in this context is defined as the constraint that average (or equivalently the 
sum) of the relative residuals (i.e., the average percentage errors) must equal zero. 
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1
𝑙
��

𝐶(𝑎𝑖) − 𝑦𝑖
𝐶(𝑎𝑖)

�
𝑛

𝑖=1

= 0 

• Minimum Percentage Error in this context is defined as the standard percent error of the estimate 
(SPE) expressed as a percentage error (i.e., multiplicative) relative to the predicted value 

𝑆𝑃𝐸 =  �
1

𝑙 − 𝑆
��

𝐶(𝑎𝑖) − 𝑦𝑖
𝐶(𝑎𝑖)

�
𝑛

𝑖=1

 

– Terminology – 

The term bias is one with a strict statistical definition, covered in Section 5.0. Bias is often a desirable 
statistical property and it is common to hear a methodology referred to as being “biased” or “unbiased.” 
ZMPE uses a non-standard definition of bias. ZMPE defines bias as the sum of the weighted residuals 
(i.e., the residuals in fit space). 

No distribution assumptions are made on the CER error term when fitting the ZMPE CER. While this 
may sound appealing, the lack of assumptions results in a void when attempting to validate the CER. This 
objective function can be presented as a special case of the one presented for the general NLS. 

arg min
𝑿

𝜺′𝚺−1𝜺 = arg min
𝑿

(𝐶(𝑿;𝑿) − 𝒚)′𝚺−1(𝐶(𝑿;𝑿) − 𝒚) such that �(𝜀𝑖∗)
𝑛

𝑖=1

= 0 

Where, 

𝜀𝑖∗ =
𝐶(𝒙𝑖 ,𝑿) − 𝑦𝑖
𝐶(𝒙𝑖 ,𝑿)  

𝚺−1 = 𝐖 

       = 〈 1
𝑓(𝒙𝑖,𝑿)2

〉 the diagonal matrix of the reciprocal of the squared predicted values 

 
This objective function appears very similar to that of NLS with a weighted residual (i.e., MUPE). 
However, there are two distinct differences. First, the weighting matrix, W, is dependent on the predicted 
value of each observation, rather than the predicted value of a prior step in the numerical algorithm. 
Second, there is a constraint that the weighted residuals (i.e., percentage errors) must sum to zero. These 
two alterations have significant effects on the optimization routine used to solve the objective function. 
NLS methodologies derive approximate statistical results based on results from the final iteration of the 
optimization algorithm. This is no longer possible when using ZMPE. The following are key items to note 
when considering using the ZMPE methodology: 

• The relative residual calculation is reversed to represent the predicted value minus the observed 
value. This reverses the meaning of a positive or negative residual from all of the other 
methodologies. 

• Section 5.0 provides a definition of bias, which is different from the ZMPE definition. 
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• There is no consistent statistical output or methodology to validate the model. 
• Cost analysts need to quantify the uncertainty about the point estimate. Other regression methods 

do this by calculating a prediction interval. ZMPE provides no universally accepted methodology 
to define the location of the point estimate in the error distribution nor the shape of the error 
distribution.  

• In the linear case, the Zero Percentage Bias constraint is satisfied by using a WLS (Section 
3.3.2.2) methodology with an intercept term. 

• The Zero Percentage Bias constraint reduces the degrees of freedom by one. 
• The Zero Percentage Bias constraint specification defines a ZMPE CER. Without this constraint, 

ZMPE becomes an MPE CER.  

ZMPE is a popular methodology in cost analysis. Research and papers that attempt to resolve the 
observations above are available in the literature. For more information on ZMPE its associated research, 
see Appendix 0 General Error Regression Models (GERM). 

3.3.6 Ridge Regression 
3.3.6.1 Overview 
Ridge regression is an extension of Section 3.3.1 Ordinary Least Squares (OLS) for use when high 
multicollinearity (Section 4.3.2 Multicollinearity) is present. Multicollinearity occurs when there is a near 
linear relationship between two or more independent variables of the regression equation. Intuitively, the 
nearly linear relationship between two or more of the independent variables makes it difficult for the 
regression to discern the true parameters, thus resulting in very large variances around the coefficient 
estimates. Even a very small change in the data set could result in a large change in the values of the 
coefficients. 

If suspected, the best course of action to correct for multicollinearity is to collect more data and see if the 
additional data resolves the problem. For example, CIC data sets with monotonically increasing unit 
numbers and rising production rates are often highly collinear. In this instance, additional data collection 
over the complete production run may capture stable and falling production rates, resolving the 
multicollinearity problem. Another course of action is to remove one or more of the collinear variables 
from the model. In cases where these options are impractical or ineffective in dealing with 
multicollinearity, the method of Ridge Regression is an option. 

Ridge Regression, or simply Ridge55, usually takes on the same form for 𝐶(𝑿;𝑿) as OLS. Just like OLS, 
Ridge expresses a linear functional form and a normal additive error term; that is, the assumption that the 
errors are independently and identically distributed as normal. Closed-form formulas (Appendix A.4.6) 
exist to solve for both the coefficient estimates and for all of the statistical metrics of interest. Again, the 
normality assumption provides a systematic framework for inference. 

                                                      

55 It is also common to see Ridge referred to as 𝐿2 Regularization. 
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While many of the properties are identical to those of OLS, Ridge applies an additional constraint to the 
model. Ridge is derived by issuing a restriction on the length of the coefficient vector. This restriction is 
applied on the sum of the squared coefficients, not on the individual coefficients, and should not be 
confused with Section 4.2.7 Restricted Least Squares (RLS).  

This method derives estimates of the regression parameters by decreasing the variance of the parameters. 
However, this decreased variance in the parameter estimates introduces bias (see Step 5: Characterize 
Uncertainty for more on bias). This section will discuss Ridge in the context of Section 3.3.1 Ordinary 
Least Squares (OLS), however, the concept applies to Section 3.3.2 Generalized Least Squares (GLS) and 
Section 3.3.3 Transformable Linear and the Log-Linear Models.  

Ridge is highly dependent on the scale of the data. As a result, all predictors must be centered around zero 
and scaled to have the same standard deviation. Calculate the centered and scaled predictors, 𝑿∗, as 
follows, 

𝒙𝑗∗ =
𝒙𝑗 − �̅�𝑗

�∑ �𝑎𝑖𝑗 − �̅�𝑗�
2𝑛

𝑖=1

 

Below is the statistical formulation for the Ridge model in matrix form. The first part of the statement 
expresses that the response variable, or vector, 𝒚, is equal to the matrix of scaled predictors, 𝑿∗, 
multiplied by the coefficient variables, or vector, 𝑿, plus some random error, 𝜺. The second part of the 
statement indicates the assumption that the error term is normally distributed with a mean of zero, the 
same constant variance of 𝜎2, and a covariance of zero. 

The third part to the statement indicates that the sum of squares of the coefficients is restricted to be less 
than some unknown constant, 𝐶. This constant translates into (but is not equivalent to) what is known as 
the ridge parameter in the analysis. This guide denotes the ridge parameter as 𝜆 (lowercase lambda), but it 
is not uncommon to see it denoted as κ (lowercase kappa), or 𝑘. This additional constraint to the problem 
introduces bias into the coefficient estimates. As the value of 𝐶 decreases, 𝜆 increases, and the amount of 
bias introduced into the estimate of 𝑿 increases, but with a corresponding reduction in variance. 

𝒚 = 𝑿∗𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) such that 𝑿′𝑿 < 𝐶 

This statement explicitly captures the assumptions made when conducting Ridge. These are the same 
assumptions introduced with OLS: 

(1) Independence of errors. Each error, 𝜀𝑖, is not related to any other error term. 
(2) Homoscedasticity. Each error, 𝜀𝑖, has a constant variance, 𝜎2, across the data range.  
(3) Normality. The errors are normally distributed with a mean of zero. 
(4) Linearity. The relationship exhibits a constant slope over the data range. 
(5) Error term. The error is not proportional to the independent variables  

In OLS, assumptions (1), (2), and (4), the Gauss-Markov theorem states the coefficient estimates are the 
Best Linear Unbiased Estimators (BLUE) of the true parameter values, with the lowest variance. 
However, with Ridge regression the estimator is no longer unbiased, and can be shown that for any 𝜆 >
0, the Ridge estimator has a smaller variance than the BLUE estimator derived from OLS. To fit this 
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regression model by method of least squares, find values for the coefficient vector 𝑿, which minimize the 
penalized SSE. The resulting vector of coefficients is the centered and scaled predictors, 𝑿∗. Using the 
method of Lagrange multipliers (Appendix A.4.7.3) to enforce the constraint on 𝑿, the penalized 
objective function is as follows. A normal application is to define 𝑿 with the smallest possible values 
while resulting with acceptable fit parameters56.  

arg min
𝑿

𝜺′𝜺 = arg min
𝑿

((𝒚 − 𝑿∗𝑿)′(𝒚 − 𝑿∗𝑿) + 𝜆𝑿′𝑿) 

3.3.6.2 Applying Ridge Regression 
The first step in Ridge regression is to center and scale the independent variables. Since the variables are 
transformed to fit the model, they must also be transformed back to unit space after fitting the model to 
use for analysis. However, most software packages perform both of these steps automatically without the 
user ever being aware. Ridge is a convenient model because the problem has a closed-form solution. Once 
a value for the ridge parameter, 𝜆, is selected, formulas exist for the estimated values of the coefficients 
�̂�0 and �̂�1 as well as the estimated variance of the error term, 𝜎�2. 

The formula for 𝑿� is: 

𝑿� = (𝑿′𝑿 + 𝜆𝑰)−1𝑿′𝒚 

In practice, the ridge parameter is varied and coefficient parameters are estimated for each of those 
values. A value of 𝜆 is selected where the parameter estimates start to stabilize (i.e., the relative change in 
the estimate is small as 𝜆 increases). This analysis approach of varying the value of 𝜆 and observing the 
convergence of the coefficient estimates creates a ridge trace (or perturbation) plot. Note as 𝜆 increases so 
does the standard error of the estimate, despite variance around the coefficients decreasing. A normal 
application is to select the smallest value of 𝜆 required for the parameter estimates to stabilize. Current 
practice is to limit the 𝜆 value at or below .3.  

The Ridge estimator is known to be biased. The equation for the bias is, 

𝑏𝐶𝑎𝑠�𝑿�� = −𝜆�𝑿∗′𝑿∗ + 𝜆𝑰�−1𝑿 

Where, 

𝑏𝐶𝑎𝑠�𝑿�� = the (𝑘 + 1) × 1 vector of coefficient bias values 
𝑿∗ = the 𝑙 × (𝑘 + 1) matrix of centered and scaled predictors (and the intercept) 
𝑰 = the (𝑘 + 1) × (𝑘 + 1) identity matrix 
𝑿 = the (𝑘 + 1) × 1 vector of true parameter values (unknown) 
𝜆 = the ridge parameter (scalar) 

                                                      

56 Acceptable fit parameters are typically determined by the specific cost estimating organization. 
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Note the bias equation contains the true parameter, 𝑿. Since 𝑿 is unknown, the bias cannot be calculated 
in practice.  

3.3.6.3 Ridge Regression Example 
The data set shown in Table 14 is used in this example. Power and Aperture Area (Aper) are highly 
correlated. Section 4.3.2 uses an expanded example dataset to provide more details on diagnosing 
multicollinearity.  

As a first attempt to gain insight into the relationship between the predictors and the response, CO$TAT 
is used to fit the linear regression analysis and return standard outputs. Table 18 displays the table of 
coefficients from the OLS analysis. The Beta Value column represents 𝑿�∗, the coefficients associated 
with the centered and scaled data.  

Table 18: OLS Results Before Applying Ridge Regression 

 

Request the Ridge Statistics and Trace Plot from the Report Styles menu. In addition to the OLS outputs 
(demonstrated in Section 3.3.1.3), the software returns a Ridge trace table and trace (perturbation) plot, 
displayed in Figure 38 and Figure 39. 

  
Figure 38: Ridge Specific Regression Output 

Variable Coefficient Std Dev of Coef Beta Value
T-Statistic 
(Coef/SD) P-Value Prob Not Zero

Intercept 37.3129 449.4459 0.0830 0.9378 0.0622
Power 28.2134 4.6985 0.9777 6.0047 0.0039 0.9961
Aper 6.1047 57.2542 0.0174 0.1066 0.9202 0.0798

IV. Ridge Pertubation Parameter (RPP) & Related Statistics
RPP by Non-iterative Procedure 0.0061
RPP by Iterative Procedure 0.0068
Von Neumann Test for Autocorrelation 3.6234
Durbin-Watson Statistic 3.1057
Determinate of (X'X) 0.1106
Measure of Ill conditioning 9.0400

Ridge Trace Table
Ridge Parameters BETA (1) BETA (2) SSE

0.00 0.9777 0.0174 3539.1306
0.02 0.8478 0.1371 4104.5678
0.04 0.7695 0.2055 5005.9975
0.06 0.7164 0.2489 5884.9395
0.08 0.6775 0.2782 6696.4412
0.10 0.6474 0.2990 7450.5198
0.12 0.6231 0.3141 8164.3838
0.14 0.6029 0.3253 8852.9625
0.16 0.5857 0.3337 9527.6302
0.18 0.5707 0.3400 10196.6826
0.20 0.5575 0.3447 10866.0511
0.22 0.5457 0.3482 11539.9189
0.24 0.5349 0.3508 12221.1902
0.26 0.5251 0.3526 12911.8338
0.28 0.5160 0.3537 13613.1334
0.30 0.5076 0.3544 14325.8684
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Figure 39: Ridge Trace (Perturbation) Plot 

These results may vary in appearance by software package, but all should contain the same basic 
information. Figure 38 shows a table of statistics which can be valuable to the identification of high 
multicollinearity. The Trace Table shows the Ridge parameter, 𝜆, on the left, and the coefficient estimates 
and model standard error. The first row with the ridge parameter set to zero, 𝜆 = 0, is the OLS regression 
model. Note the coefficient values match those in the Beta Value column of Table 18. This is because the 
Trace Table displays the centered and scaled variety of the coefficients. The recommended practice is to 
choose the ridge parameter, 𝜆, that stabilizes corresponding Beta Values while minimizing SSE.  

Figure 39, represents the Trace Table in graphical form. When selecting a 𝜆, look for the spot where the 
coefficients start to “level out.” CO$TAT tests the range of 𝜆’s from 0 to 0.30 and in this example, the 
leveling happens around 𝜆 = 0.12. 

After selecting a Ridge parameter, run the linear model again. The model is now run with the specific 
𝜆 = 0.12, and the coefficient table is displayed in Table 19.  

Table 19: Before and After Ridge Example Coefficients with Ridge Parameter = 0.12 

 

Compared to the results in Table 18, the coefficients differ greatly and their standard errors are much 
smaller. This becomes critical in Section 4.4.2 Validate Variable Set and in Step 5: Characterize 

Before Ridge Regression

Variable Coefficient
Std Dev 
of Coef

Beta 
Value

T-Statistic 
(Coef/SD) P-Value

Prob Not 
Zero

Intercept 37.3129 449.4459 0.0830 0.9378 0.0622
Power 28.2134 4.6985 0.9777 6.0047 0.0039 0.9961
Aper 6.1047 57.2542 0.0174 0.1066 0.9202 0.0798

After Ridge Regression

Variable Coefficient
Std Dev 
of Coef

Beta 
Value

T-Statistic 
(Coef/SD) P-Value

Prob Not 
Zero

Intercept -750.9813 682.6385 -1.1001 0.3330 0.6670
Power 17.9806 1.6667 0.6231 10.7879 0.0004 0.9996
Aper 110.4452 20.3101 0.3141 5.4380 0.0055 0.9945
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Uncertainty. In this example, the coefficients significantly varied between OLS and Ridge. There were 
also significant changes in the coefficient p-values. For example, Aper went from being not statistically 
significant to being statistically significant. These results were consistent with the provided SME inputs. 
More on this topic is covered in Section 4.3.2 Multicollinearity. 

Accepting the CER requires additional analysis. Refer to Step 4: Validate CER for more information 
regarding CER validation. 

 Estimation with Prior Information 3.4
3.4.1 Types of Prior Information 
Prior information about parameter values or relationships in a CER arises in various ways. Sometimes 
theoretical reasoning or practical experience suggests constraints on parameter space. CIC exponents, for 
example, are generally negative. In other cases, estimates obtained from previous or complementary 
empirical studies typically give information about current parameters. For example, visibility into 
Economic Order Quantities (EOQs)57 for class standard equipment on a surface combatant program, 
culled from shipyard/supplier contracts, might provide bottom-up information on rate effects in a CIC for 
material. In all these cases, prior information exists outside of the sample under consideration. 

Prior knowledge represents information about the population regression equation. In practical applications 
in defense cost analysis, three basic types of information are generally available: 

(1) Exact knowledge of parameter relationships (Section 3.4.2) 
(2) Pseudo-exact knowledge of parameter values (Section 3.4.3) 
(3) Inexact knowledge of parameter values (Section 3.4.4) 

3.4.2 Exact Prior Information on Parameter Relationships 
The knowledge of exact prior information on parameter relationships is a well-studied problem in the 
fields of statistics and econometrics. In this scenario, a priori knowledge provides information on how 
parameters must behave in relation to each other and are solved by applying constraint equations to the 
chosen regression methodology (Section 3.3). The remainder of this section examines this problem in the 
context of 3.3.1 Ordinary Least Squares (OLS). 

The constraint equations specification requires two components. The first component is an 𝑎 × 𝐴 matrix 
𝑹 with a column for each parameter and a row for each of the 𝑎 constraints enforced on the model. The 
second component is an 𝑎 × 1 vector 𝒒 of equality constraints. To illustrate, consider the model with 
𝐴 = 4,  

𝒚 = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + 𝛽3𝒙3 + 𝜺 

 

                                                      

57 EOQ the number of units that a company should add to inventory with each order to minimize the total costs of 
inventory—such as holding costs, order costs, and shortage costs. 
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Due to some prior information on parameter relationships, 𝛽1 + 𝛽2 = 1. This translates to, 

𝑹 = [0 1 1 0] (i.e., a 1 x 4 matrix) 

The first column relates to 𝛽0, the second column relates to 𝛽1, and so on. In this case, the vector 𝒒 
simply is 𝒒 = [1], since there is only one equation, which is being set equal to 1. Thus, 

𝑹𝑿 = 𝒒 (i.e., a 1 x 1 vector) 
⇒ 0𝛽0 + 1𝛽1 + 1𝛽2 + 0𝛽3 = 1 
⇒ 𝛽1 + 𝛽2 = 1 

Additional restrictions may be added using the same logic by simply adding another row to 𝑹 and to 𝒒. 
Specifying a row with all zeroes except for a single one fixes that parameter to an exact value. The 
equality constraint in 𝒒 for that row would simply be the value to be fixed. Section 3.4.3 studies this 
specific case in much greater detail. Further, hypothesis tests do exist to test the hypothesis of these 
restrictions using a penalization of the F-test. This test is shown in Appendix A.4.9.1 Restricted Least 
Squares. 

The method of Lagrange multipliers (Appendix A.4.7.3) is used to solve the least squares problem once 
the restrictions are specified. Generically, this translates to an objective function of, 

arg min
𝑿

((𝒚 − 𝐶(𝑿;𝑿))′(𝒚 − 𝐶(𝑿;𝑿)) + 𝝀(𝑹𝑿 − 𝒒)) 

In the OLS case, a closed form solution to the problem exists. If 𝑿�𝑂𝑂𝑂 is the unrestricted OLS solution, 
then the RLS solution can be expressed as, 

𝑿�𝑅𝑂𝑂 = 𝑿�𝑂𝑂𝑂 − (𝑿′𝑿)−1𝑹′(𝑹(𝑿′𝑿)−1𝑹′)−1(𝑹𝑿�𝑂𝑂𝑂 − 𝒒) 

This estimator provides the best linear unbiased estimator under the restrictions. If the restrictions are 
misguided or otherwise incorrect, then bias is introduced into the estimator. The references in Appendix 
A.4.9.1 Restricted Least Squares provide specific examples of this estimator as well as goodness of fit 
tests for the RLS solution. 

3.4.3 Pseudo-Exact Prior Information on Parameter Values 
The knowledge of precise, high value prior information on the value of regression parameters is rare. 
However, in these scenarios, fixing these parameters to precise values has the effect of removing the 
parameters from the regression analysis while still allowing them to influence the response. Recall under 
the classical framework, regression parameters are fixed, unknown values, estimated by the regression. 
Fixing a parameter value changes it to a fixed, known value. This is a rather strong statistical statement 
and should only be considered when extremely high confidence on high value prior information is 
possessed.  

In this case, the model results in more degrees of freedom because fewer parameters require estimation. 
As a result, fixing a parameter increases the number of degrees of freedom in the error term, which 
intuitively may lead to the conclusion of increased CER precision, but in reality may have the inverse 
effect depending on the quality of the prior information. 
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There are two ways to apply this methodology to a data set. First, exact information on a parameter value 
is a special case of exact information on a parameter relationship. All that changes is the formulation of 
the constraint equations. All values in the matrix 𝑹 will be zero except at the location(s) of the 
parameter(s) to be fixed. The resulting application is the same application introduced in Section 3.4.2. 

Alternatively, implementation of this methodology is possible by a transformation or normalization of the 
regression equation. From this point, the regression methodology (Section 3.3) most relevant to the CER 
functional form can be utilized, diagnosed, and assessed (Step 4: Validate CER). Finally, reverse the 
normalization to produce the final CER. While these two approaches may seem very different, both 
provide the exact same results. 

Fixing a parameter value is a very easy technique to implement. Consider a partition of the 3.3.1 Ordinary 
Least Squares (OLS)  model where the data, 𝑿, and the respective coefficient parameters, 𝑿, are broken 
into two groups. The first group, 𝑿1, consists of all the independent variables to be fit by OLS regression. 
This set of parameters is denoted as 𝑿1. The second group, 𝑿2, consists of all the independent variables 
whose parameters, denoted by 𝑿2, are fixed ahead of time. 

𝑿 = (𝑿1|𝑿2) and 𝑿′ = (𝑿1′ |𝑿2′ ) 

Under this definition, the regression equation becomes, 

𝒚 = 𝑿𝑿 + 𝜺 
= 𝑿1𝑿1 + 𝑿2𝑿2 + 𝜺 

In this case, the claim is made that the coefficient vector 𝑿2 is known ahead of time to be some vector 𝜸. 
Note that on the continuous scale, the probability that 𝑿2 = 𝜸 is zero, so a reformulation yields, 

𝒚 = 𝑿1𝑿1 + 𝑿2𝜸 + 𝜺 for fixed 𝜸 ≠ 𝑿2 

And, 

𝒚∗ = 𝑿1𝑿1 + 𝜺 where 𝒚∗ = 𝒚 − 𝑿2𝜸 
 

This form represents a normalization of the response for the prior information related to 𝑿2. The OLS 
methodology can now be applied to the new response 𝒚∗ with independent variable 𝑿1.  

To evaluate the validity of such an approach, it is important to consider potential bias and variance 
implications on the estimator for 𝑿1. Taking the expected value of the estimator gives the following 
result: 

𝑏𝐶𝑎𝑠�𝑿�1� = (𝑿1′ 𝑿1)−1𝑿1′ 𝑿2(𝑿2 − 𝜸) (1) 
Similarly, by OLS, for the model fit by fixing coefficients the variance estimator for 𝜎2 is,  

𝜎�2 =
𝒚∗′(𝑰 − 𝑿1(𝑿1′ 𝑿1)−1𝑿1′ )𝒚∗

𝑙 − 𝐴1
 where 𝐴1 = # parameters in 𝑿1 

Again, taking the expected value of the estimator gives the following result: 
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𝐸(𝜎�2) = 𝜎2 +
(𝑿2′ − 𝜸′)𝑿2′ (𝑰 − 𝑿1(𝑿1′ 𝑿1)−1𝑿1′ )𝑿2(𝑿2 − 𝜸)

𝑙 − 𝐴1
 

≥ 𝜎2 
(2) 

For both expressions (1) and (2), above, the bias is zero when either 𝜸 = 𝑿2 or 𝑿1 ⊥ 𝑿2, that is, when the 
parameter was fixed to its true theoretical value or if the independent variables in 𝑿1 have zero correlation 
with the independent variables in 𝑿2; both occurring with probability zero outside of a controlled setting 
(i.e., a designed experiment). Also observe that the expected value for 𝜎�2 is 𝜎2 plus an always-positive 
quadratic form. From these expressions, it can be concluded that fixing variables based on pseudo-exact 
prior information always results in biased coefficients, and always results in an inflated estimate of the 
model variance, 𝜎�2. 

Consider the formulations for both the MSE (Section 4.4.1 and Section 5.0) and the Margin of Error 
(MOE) of a Prediction Interval (Section 5.3): 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝐶𝐶𝑒𝑟𝑟𝑒𝑟
 

𝑀𝑆𝐸(𝒚�) = 𝑉𝑎𝐴(𝒚�) + 𝑏𝐶𝑎𝑠2(𝒚�) 

 
𝑀𝑀𝐸 = 𝐶𝐴𝐶𝐴𝐶𝐶𝑎𝑙 𝑉𝑎𝑙𝐴𝐴 ∙ 𝑆𝐴𝑎𝑙𝐶𝑎𝐴𝐶 𝐸𝐴𝐴𝐶𝐴 

= 𝐴1−𝛼2
(𝐶𝐶𝑒𝑟𝑟𝑒𝑟) ∙ √𝑀𝑆𝐸�1 + (𝒙0′ (𝑿′𝑿)−1𝒙0) 

The OLS model fit with all the independent variables is the one with the smallest SSE. However, in the 
MSE formulation, there is the 𝐶𝐶𝑒𝑟𝑟𝑒𝑟 term in the denominator. Thus, if the increase in the degrees of 
freedom is enough to counteract the increase in SSE, the pseudo-exact prior model may have a lower 
MSE. A reduction in MSE occurs when the reduction in variance  exceeds any increase due to bias. 

The prediction interval critical value comes from the t-distribution with the degrees of freedom for the 
error of the model. More degrees of freedom result in lower values of the critical value, and therefore 
narrower prediction intervals. When moving from 1 to 2 degrees of freedom with a small 𝛼, this can have 
a huge impact on the MOE. However, the change from even 3 to 4 degrees of freedom may not be enough 
to outweigh any increase in the MSE. Any reduction in uncertainty due to a narrower prediction interval 
must be balanced with the unknown impact of  a biased point estimate. 

Fixing variable coefficients will bias all coefficients in the model and will inflate variance. This may lead 
to CERs that are perceived to be data driven. Only when fixing the coefficient to its exact theoretical 
value will the remaining coefficients be unbiased with minimum variance. The resulting model will be 
biased with the only question being by how much. This question is difficult to answer, and can only be 
hypothesized by considering the rationale used when fixing a coefficient. In most cases, the preferred 
methodology would be fitting the full model with fewer degrees of freedom. In the case where 𝑙 < 𝐴, 
utilize an advanced regression methodology capable of solving the problem, such as LASSO (Appendix 
A.4.9.5). 
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Example 

To illustrate this concept, consider the following model with 𝑙 = 6 and four independent variables, or 
𝐴 = 5 parameters: 

𝒚 = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + 𝛽3𝒙3 + 𝛽4𝒙4 + 𝜺 

In order to assess the impacts of fixing a coefficient, a data set is simulated (provided in Appendix F) and 
the full model is fit. Table 20 shows the results. 

Table 20: Fixed Coefficient Example – Full Model 

 

Fitting this model results in only 𝑙 − 𝐴 = 6 − 5 = 1 degree of freedom. Suppose prior knowledge 
indicates that  𝛽3 = 3. The normalized equation becomes, 

𝒚 = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + 𝛽3𝒙3 + 𝛽4𝒙4 + 𝜺 
𝒚 − 3𝒙3 = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + 𝛽4𝒙4 + 𝜺 

𝒚∗ = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + 𝛽4𝒙4 + 𝜺 where 𝒚∗ = 𝒚 − 3𝒙3 

The response is thus normalized for 𝒙3 and the model now has 2 degrees of freedom. Table 21 shows the 
results of the regression on the new, normalized response. The estimator remains unbiased and appears 
very similar to that of the full model. This is expected, since the value was fixed to the true theoretical 
value, and very close to the value of the OLS estimate, 2.97. In this scenario, fixing a coefficient results in 
unbiased coefficients for the remaining variables, with smaller standard errors, and with one additional 
degree of freedom. In this perfect example, the pseudo-exact prior information was very valuable and 
resulted in a superior model. 

Table 21: Fixed Coefficient Example – Fixed β3 = 3 

 

Now suppose the prior information suggests that 𝛽3 = 5. Just as before, Table 22 shows the results of the 
regression on the new, normalized response. Now the estimator is biased. In fact, 𝛽4 is no longer close to 
the true value, and is actually of the wrong sign. Note that the full assessment (Step 4: Validate CER) of 
the CER has not been conducted, as 𝛽4 appears to be insignificant and a strong candidate for removal 
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from the model. In addition to being biased, the standard errors of the model are roughly twice as large 
compared to the original full model in Table 20. Recalling the critical value in the prediction interval, 
increasing from 1 to 2 degrees of freedom for the error term at the 𝛼 = 0.05 significance level, lowers the 
critical value from 12.71 to 4.30. This methodology may generate results indicating the fixed coefficient 
proved valuable. While parameter standard errors doubled, the critical value in the prediction interval 
margin of error reduced by two thirds. 

Table 22: Fixed Coefficient Example – Fixed β3 = 5 

 

Figure 40 carried out this exercise across a range of values from 𝛽3 = −1 to 𝛽3 = 7. For each fixed 
value, a point estimate with the upper 95% prediction interval was generated at the true parameter values. 
The horizontal red line represents the predicted value using the full model, with the dashed red line 
representing the respective upper bound with 1 degree of freedom. The black line represents the predicted 
value with 𝛽3 fixed according to the value represented by the 𝑎-axis. The black dashed line is the 
respective upper bound with 2 degrees of freedom. 

 

Figure 40: Fixed Coefficient Example Prediction Interval Comparison 

Both results produce nearly identical point estimates. However, the point estimate with the fixed 
parameter is biased and therefore may be consistently inaccurate when predicting out of sample data (i.e., 
data not used to fit the original model). In addition, the margin of error is narrower when 𝛽3 is fixed 
between roughly 0 and 6 and wider otherwise. This demonstration is just one example dataset generated 
with a specific error distribution, and other problems may behave drastically different. However, the 
takeaway is fixing a coefficient is not a preferred methodology and is highly dependent on the quality of 
the prior information. 
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3.4.4 Inexact Prior Information on Parameter Values 
The exact value of a regression parameter is unknown. In the prior scenarios, parameters are restricted in 
the least squares objective function, forcing them to fall within a predetermined range. The parameters 
still maintain the property of being fixed, unknown values, and therefore do not result in any changes to 
the model’s degrees of freedom. Inexact prior information on parameter values restricts the feasible 
region for regression coefficient values. When this information is good, precision of the estimators may 
be increased, but otherwise may force the model into drawing conclusions not supported by the data. 

Restrictions are applied by using a methodology called Inequality Constrained Least Squares (ICLS). 
ICLS is used more as a modifier to an existing methodology (Section 3.3) rather than a separate or unique 
methodology. Restrictions are placed on a range of values, which the parameters can assume. An example 
of this is limiting a cost improvement curve to values less than 100%. Parameters are then calculated and 
the restricted model is assessed for loss of fit compared to the unrestricted model. If the inexact prior 
information is deemed acceptable, the CER can then be diagnosed and assessed (Step 4: Validate CER) as 
normal. 

Constraining a parameter value can be a difficult technique to implement. Even in the of OLS, a closed 
form solution does not exist for the parameters. As a result, algorithms are used to minimize the error 
term under the set of constraints. The consequences and implications of such restrictions can be difficult 
to assess and understand. For the purposes of this guide, many of the concerns and discussions covered in 
Section 3.3.5 Non-linear Least Squares (NLS) are relevant to ICLS. 

Accepting the CER requires additional analysis. Step 4: Validate CER contains a much more in-depth 
model validation discussion. 
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4.0 STEP 4: VALIDATE CER 
After developing the regression equation, the next step is to evaluate the CER with a critical eye focused 
on the model’s strengths, weaknesses, and limitations. A cost estimator must provide an answer, even 
when data are limited or analogies tenuous. CER validation is examining the model’s inputs, statistical 
outputs, and all other relevant metrics to support a comprehensive assessment . The “best” statistical and 
most compelling CER possible is desired, but decision makers should be informed of the strengths and 
weaknesses of the estimates, and how to best improve them going forward. 

Examination of visual and numerical analyses helps assess and validate key model properties. The 
following are key steps before accepting a CER for use in a cost estimate: 

• Understand the data relationships and coefficient estimates 
• Determine consistency with engineering and physical principles 
• Assess and validate the statistica model assumptions 
• Identify and review high influence points such as leverage points and potential outliers 
• Assess the impacts of multicollinearity 
• Determine the significance of the model and independent variables 
• Quantify metrics of best fit and prediction strength 
• Compare and contrast multiple competing CERs to identify the “best” model 

If validation of the CER is successful, proceed to Step 5: Characterize Uncertainty. Even then, do so with 
multiple CERs for a single dependent variable, or acknowledge that the proposed solution is only one of 
many possible solutions. If the validation process identifies model deficiencies, circle back to Step 3: 
Generate CER. In many cases, multiple iterations back to the previous step will be required before 
arriving at the “best” CER. 

Sometimes the “best” CER for a given application may not be the best performing CER from a statistical 
perspective. As more data are collected, reassess the analysis and return to Step 2: Analyze Normalized 
Data, Measure Correlation, and Hypothesize Functional Form. After understanding the new data, proceed 
to Step 3: Generate CER and generate a new CER. Cost analysis is an iterative process. 

Figure 41 treats the many interrelated challenges of developing a CER in serial form. There can be issues 
with the underlying data set (e.g., potential outliers); choice of regression methodology (e.g., OLS vs. 
GLS); choice of functional form (e.g., linear vs. non-linear); and choice of variable set (e.g., omitting an 
important cost driver). The first step in validating a CER is to graph the CER with the associated data. 
Figure 41 graphically outlines the process of diagnosing a model. Due to the complexity of the step, 4.2 
Model Assumptions has a separate, more detailed flowchart, found in Figure 45. 
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Figure 41: Step 4: Validate CER 
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 Graph CER 4.1
Section 2.6 Scatter Plot of the Most Promising Cost Drivers demonstrates the utility of a scatter plot used 
to identify relationships among data, particularly between cost and other independent variables. In 
conventional plots, the dependent variable is illustrated on the 𝑦-axis and the independent variable(s) are 
illustrated on the 𝑎-axis. To illustrate the importance of visualization, consider Figure 42. This famous 
dataset, known as Anscombe’s Quartet58, contains four distinct sets of points: (𝒙1,𝒚1), (𝒙2,𝒚2), (𝒙3,𝒚3), 
and (𝒙4,𝒚4). All four data sets share numerous statistical properties. In fact, each dataset has the same 
sample mean and variance for both 𝒙 and 𝒚, the same correlation, or 𝑅2, and the same linear regression 
coefficients. By looking solely at these summary statistics, the datasets appear to be identical. However, 
the scatter plots clearly show the drastic differences in the trends of the data.  

 

Figure 42: Anscombe’s Quartet 

At this stage, the graphical analysis shifts from hypothesizing a relationship to validating that relationship 
and understanding the observations in the context of the developed CER. Are there potential outliers 

                                                      

58 Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27, 17–21. 
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(Section 4.3.1 Influential Points)? Is the data distributed in a reasonable way or is there a disproportionate 
weighting of the observations to one range of the CER versus another?  

Visual analysis is just the first step in validating the CER. Utilize statistical metrics to evaluate the 
influence of each observation, validate the choice of regression methodology and functional form, and 
evaluate the statistical merits of the equation. 

4.1.1 Visualizing the Simple Regression (Single Predictor) CER 
The most common way to visualize a CER with a single predictor is to create a scatter plot (see 2.6 
Scatter Plot of the Most Promising Cost Drivers) as demonstrated using the OLS example from Section 
3.3.1.3 in Figure 43. The line shown on the graph represents the CER regression equation:  

𝑪𝑪𝑪𝑪 =  𝟗𝟐.𝟗𝟑 +  𝟐𝟐.𝟑𝟗 ∗  𝑷𝑪𝒘𝒆𝑷

 
Figure 43: Graphical View of Simple CER 

4.1.2 Visualizing the Multiple Regression (Single Predictor) CER 
If there are two or more independent variables in the CER, the relationship can be represented by the 
following general equation form, where 𝛽0 is the intercept, each 𝛽𝑖 is the coefficient associated with the 
independent variable 𝒙𝑖 (𝐶 = 1, … , 𝑘), and 𝜺 is the error associated with the CER. 

𝒚 = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + ⋯+ 𝛽𝑘𝒙𝑘 + 𝜺 

If there are two independent variables, the data has a 3-dimensional representation. For a linear functional 
form, the CER is a plane that slices through the heart of the data set, as shown in Figure 44. For non-
linear functional forms, the CER is a curved surface. 
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Figure 44: 3-D Visualization of Data 

However as the number of independent variables grows beyond two, the model is working in higher 
dimensions that are not easily evaluated visually. A substitute graphic illustrating the relationship between 
the actual observations, versus the predicted observations may provide visual insight to a multiple 
variable relationship. See Section 4.5.1.8 Predicted versus Actuals Plot. 

 Model Assumptions 4.2
All data analytics methodologies come with a set of underlying assumptions. Regression analysis, and 
CER development, is no different. The assumptions are required for the mathematics to be able to 
guarantee a property, such as minimum variance or unbiasedness of the model. Distributional 
assumptions, such as normality, are crucial to be able to make inferences and characterize uncertainty 
around developed estimates. 

A common regression assumption is that the errors are independently and identically distributed; that is, 
uncorrelated with each other and all coming from the same distribution with the same variance. Assumed 
is some type of functional form, be it linear or a specific non-linear model, in order to fit a regression 
equation. Finally, a distributional assumption, typically normality, enables a framework for statistical 
inference and quantifications of uncertainty. Step 3: Generate CER introduced various regression 
techniques, adjusting the four standard OLS assumptions noted in Section 3.1.1 Using OLS as a 
Regression Method Baseline. 

There are three additional assumptions to the four standard OLS assumptions when multiple independent 
variables exist. Validation for these three assumptions is conceptual and less conducive to direct 
assessment than the other four. 

(1) The models discussed all assume that all independent variables are non-stochastic. This 
assumption states that the parameters are fixed and to be estimated, as opposed to being random 
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and to be predicted. In other words, the random error associated with the model all comes from 
variation in the response variable, 𝒚, and not from an independent variable, 𝒙. Violation or 
deviation from this assumption is an advanced topic beyond the scope of this guide. One way to 
deal with it is to utilize a Mixed or Random Effects model, briefly introduced in Appendix 
A.4.9.3. This assumption does not suggest that uncertain inputs for predictions are inappropriate, 
and in general should not be of concern. 

(2) No perfect multicollinearity, or linear combinations, exists between the independent variables. 
This occurs when two (or more) predictors are exact multiples or combinations of each other. A 
simple example is length being given in both meters and feet. In a slightly less obvious case, 
suppose that a ship’s crew drives the Purchased Services. Desired are the effects of both Officer 
and Enlisted personnel. Because Officers + Enlisted = Complement, all three cannot be used in 
the regression equation. This guide treats this issue as a data normalization step, covered in 
Section 2.5.2 Identify Redundant Variables and Potential Multicollinearity. 

(3) No correlation exists between the error term of the CER and the error term of another CER in the 
greater system estimate. Under the assumptions of the classical normal linear regression model, 
the least squares estimators of the regression coefficients are unbiased and with minimum 
variance. These properties flow directly from the premise that the specification of the model 
represents all there is to know about the regression equation. However, the integrity of these 
properties might be compromised if other pieces of information are in fact available. An example 
would be knowledge that the error term in the regression equation under consideration could be 
correlated with the error term in some other regression equation. By estimating each equation 
separately and independently, important information about the mutual correlation is discarded. 
While the resulting OLS estimates of the parameters remain valid, they are no longer with 
minimum variance (i.e., efficient). For efficient estimation, the technique of "Seemingly 
Unrelated Regression" is required. The technique, a form of Generalized Least Squares, is beyond 
the scope of this guide. This issue is not to be a concern, but rather a concept to be aware of. 

Regardless of the regression methodology used to fit the CER, it is critical that the OLS assumptions are 
well understood and appreciated. The OLS model is often the default for the first look at the data and 
other methodologies are remedies for assumption violations with OLS. Even when not hypothesized to be 
appropriate, recalling Section 2.8 Hypothesize Functional Form, OLS is conducted in conjunction with 
the hypothesized model functional form. As a result, treatment of the OLS is at a higher level of rigor 
than for the other regression methodologies. The remaining methods often use the same techniques and 
principles as OLS, simply performed on transformed or standardized data, or with analogous metrics.  

Visual analysis of specialized plots is the primary methodology for assessing the assumptions. Formal 
tests do exist, but are generally secondary to their visual counterparts in this context. Some tests are more 
popular than others, and their use depends heavily on the field of study. Even within DoD, different 
organizations may have different guidelines and requirements for the use of a specific formal test. 

The following sections discuss the explicit assumptions by each of the methods introduced in Step 3: 
Generate CER, how to assess them both visually and analytically, and how to remedy potential violations. 
While presented in a numerical order, it is important to consider and assess all four assumptions before 
proceeding to any next step, be it accepting or rejecting an assumption. The assumptions are all 
interrelated, and an apparent violation of one may be caused by a more severe violation of another. 
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Figure 45: Step 4.2 Model Assumptions 
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4.2.1 Ordinary Least Squares (OLS) 
Section 3.3 introduced the Ordinary Least Squares Model (OLS) in two forms: Simple Linear Regression 
(SLR) and Multiple Linear Regression (MLR). Both models have the same set of assumptions and use the 
same validation methodologies. As a result, the remainder of this section will treat OLS in the MLR case. 
The difference between the evaluations of the two methods is generation of a scatter plot is possible for 
SLR, while MLR must rely on other methods to visualize the data. 

The model statement explicitly captures the assumptions of the analysis. Recalling Section 3.3.1.3, the 
OLS model is, 

𝒚 = 𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

4.2.1.1 Residuals 

– Terminology – 

The term residual can be ambiguous. This section discusses three common and uniquely defined 
residuals: raw residual, internally studentized residual, and externally studentized residual. 

Another common term is the “standardized residual.” The most commonly used definitions are the 
internally studentized residual and externally studentized residual. Some software such as MS Excel uses 
neither.  

For the purposes of this handbook, the “standardized residual” is the internally studentized residual. 

The residual error is the difference between the actual value and the predicted value. This is the raw 
residual and for OLS is, 

𝒆𝑟𝑟𝑟 = 𝒚 − 𝒚� 
= 𝒚 − 𝑿𝑿� 

This is the simplest residual and is useful to examine how far each predicted point is from the actual 
value. However, this is not the correct residual to use in the sense of a residual analysis. While the errors, 
𝜺 = 𝒚 − 𝑿𝑿 are assumed to have constant variance, the residuals, 𝒆𝑟𝑟𝑟, do not. As a result, the residuals 
need to be standardized. Dividing each raw residual by the corresponding variance results in the internally 
studentized residual, 

𝐴𝑖 =
𝑦𝑖 − 𝑦�𝑖

𝜎��1 − ℎ𝑖𝑖
 

Where, 

𝜎� = √𝑀𝑆𝐸 
ℎ𝑖𝑖 = 𝐶𝑡ℎ diagonal entry of the hat matrix,𝑯 
𝑯 = 𝑿(𝑿′𝑿)−1𝑿′ 

The internally studentized residual follows an approximate standard t-distribution, with mean of zero and 
variance of one, and is acceptable to use for residual analyses. A relatively minor modification results in 
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the residual following a t-distribution, instead of an approximate t-distribution. This is done by 
calculating the standard error, 𝜎�, for each residual based on the data set without that observation. This 
calculation of the residual of interest uses an independently derived error. This is the externally 
studentized (or deleted) residual, 

𝐴𝑖,−1 =
𝑦𝑖 − 𝑦�𝑖

𝜎�𝑖,−1�1 − ℎ𝑖𝑖
 

Where, 

𝜎�𝑖,−1 = √𝑀𝑆𝐸 (calculated without data point i) 
ℎ𝑖𝑖 = 𝐶𝑡ℎ diagonal entry of the hat matrix,𝑯 
𝑯 = 𝑿(𝑿′𝑿)−1𝑿′ 

Standardizing the residual is not as simple as dividing by the estimate of the error, 𝜎�. The term 
standardized is ambiguous and not every statistical package makes it obvious which methodology is being 
used. The internally studentized residual is acceptable to use and is returned by most software packages, 
including CO$TAT. MS Excel returns a standardized residual but is defined incorrectly.59 Many 
dedicated statistical packages provide the option to return the externally studentized residual as well, 
including SAS and R, referred to as ‘rstudent’, and Minitab, referred to as the ‘deleted residual’.  

An analysis of the residuals is not valid unless done using either the internally or externally 
studentized residual. When available, is the analyst is recommended to use the externally studentized 

residual. 

4.2.1.2 Independence of Errors 
The statement of 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) captures the assumption that each error is distributed independently. 
Observing a value for some 𝑦𝑗 has no impact on the expected value of some other response, 𝑦𝑘. A 
common violation of this assumption is the correlation of sequential responses in a time series 
application. Again, this is beyond of the scope of the material in this guide. 

Recalling Section 3.3.1 Ordinary Least Squares (OLS) and the Gauss-Markov theorem, which explain 
when the independence of errors assumption fails, the OLS model no longer guarantees the Best Linear 
Unbiased Estimate of the coefficients. As a result, the variances around the coefficients are inflated. 
However, the estimator is still unbiased. 

4.2.1.2.1 Standardized Residuals Visual Tests 

– Terminology – 

When using statistical software be careful to understand is being portrayed.  

                                                      

59 Excel has changed formulas for the standardized residual from Office 95 to 97 and may do so again in future. This 
information is current through Office 2013. 
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A residual plot is the most common way to assess the independence of the errors. A residual plot (i.e., a 
residuals versus predicted values plot) is a scatter plot with the standardized residuals on the 𝑦-axis, and 
the predicted value of the response, 𝒚�, on the 𝑎-axis. An ideal result displays random scatter around zero, 
with no apparent pattern. This type of plot is a standard output from most statistical tools and is easy to 
construct given the standardized residuals. Due to the standardization of the residuals, all residual plots, 
regardless of the data, appear on roughly the same scale. 

Figure 46 displays two example residual plots. In Plot A, the independence assumption is not of a 
concern since the figure displays random scatter. Plot B suggests a pattern, which could indicate lagging 
correlation between residuals, common in a time series application. This pattern may also arise in CIC 
analysis with production breaks. 

 

Figure 46: Independence of Errors Residual Plots 

If distinct patterns are present, consider potential sources of the problem. Outside of the time series case, 
an apparent problem with the residual versus predicted values plot often stems from a violation of the 
linearity assumption, covered in more detail in Section 4.2.1.5 Linearity. 

Alternatively, if an independent variable has some type of sequential interpretation (e.g., time or unit 
number), plot this value as an independent variable on the 𝑎-axis to assess potential correlation which 
may have an impact on the residuals. To reiterate, this type of application is where independence of errors 
is most likely to be problematic, and is referred to as autocorrelation or serial correlation, which is beyond 
the scope of this guide. 

4.2.1.2.2 Formal Tests for Independence 
As previously noted, the visual tests are the main assessment of assumptions. A rejection based on an 
assumption by a formal test would supersede a conclusion drawn from the graphical analysis is unlikely. 
However, the tests can still be useful and their use is more prevalent in some fields than in others. 
Additionally, different organizations within DoD may have unique requirements and/or guidelines on 
which tests to use and at what significance level. In the case of independence of errors, there are two 
common tests, which are popular to test autocorrelation and constant variance.  These tests are the 
Durbin-Watson test and the Runs test. 
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The Durbin-Watson (DW) test is the most widely used test for autocorrelation of the residuals, which test 
the correlation between a given residual and the one preceding. A p-value for the test less than the pre-
specified 𝛼 results in a rejection of the independence of errors assumption. 

In some cases, software applications return only the test statistic, 𝐷, and not a p-value. In these cases, use 
a table of critical values60 to determine the outcome of the test. The DW table requires both the sample 
size, 𝑙, and the number of independent variables, 𝑘. The tables then returns two critical values: an upper 
bound (𝐶𝑈) and a lower bound (𝐶𝑂) which are used as follows: 

• If 𝐷 > 𝐶𝑈 then fail to reject the null hypothesis and accept the independence assumption 
• If 𝐷 < 𝐶𝑂 then reject the null hypotheses and reject the independence assumption 
• If 𝐶𝑂 < 𝐷 < 𝐶𝑈 then the test is inconclusive 

The Runs test is a nonparametric test to determine if the sequence of data are random, which test whether 
the positive and negative elements appear at random. The test looks at the sign (+ or -) of each residual 
and attempts to detect if there is a pattern to their occurrences. A p-value for the test less than the pre-
specified 𝛼 results in a rejection of the independence of errors assumption.  

4.2.1.3 Homoscedasticity 
The mathematical phrase 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) captures the assumptions of identically distributed error terms 
with constant variance. A violation of this assumption is fairly common to cost analysis: as the response, 
𝒚, gets larger, so does the error. 

Recalling Section 3.3.1 Ordinary Least Squares (OLS) and the Gauss-Markov theorem, which explain, 
when the homoscedasticity assumption fails, the OLS model no longer guarantees the Best Linear 
Unbiased Estimate of the coefficients. As a result, the variances around the coefficients are inflated. 
However, the estimator is still unbiased. 

4.2.1.3.1 Homoscedasticity Visual Tests 
The most common way to assess homoscedasticity is to generate scatter plots and a residual versus 
predicted plot. For SLR, examine a scatter plot for the single predictor for any type of non-constant 
scatter. Figure 47 shows two scatter plot examples. Plot A indicates random scatter about the regression 
line, indicating homoscedasticity. Plot B shows a larger variance for larger values of y, which suggests 
multiplicative error (i.e., heteroscedasticity). Similarly, in the MLR setting, create a scatter plot for each 
independent variable. Look for the same type of observations at the individual level as with the SLR plot. 
While informative, assessing homoscedasticity based solely on scatter plots is insufficient. 

                                                      

60 https://www3.nd.edu/~wevans1/econ30331/Durbin_Watson_tables.pdf 
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Figure 47: Scatter Plots For Assessing the Homoscedasticity Assumption 

While the scatter plot(s) provide a good starting point, a residual versus predicted value plot, as defined 
previously in Section 4.2.1.2, provides a better understanding of the behavior of the errors. An ideal result 
displays random scatter around zero, with no apparent pattern.  

Figure 48 shows four example residual plots. Case A shows random scatter, suggesting 
homoscedasticity. In Case B multiplicative error appears present, indicated by the cone-shaped nature of 
the residuals (i.e., heteroscedasticity). Cases C and D also indicate heteroscedasticity and a violation of 
the non-constant variance assumption. The residuals follow a curved pattern. As noted with the 
independence assumption, apparent problems with the residual versus predicted values plots often stem 
from a violation of the linearity assumption. These two plots suggest this possibility, covered in more 
detail in Section 4.2.1.5 Linearity. 

 
Figure 48: Residual Plots For Assessing the Homoscedasticity Assumption 
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4.2.1.3.2 Formal Tests 
Visual tests are the main assessment of assumptions. Formal tests are still useful for validating the visual 
assessments. In the case of homoscedasticity, two common tests are the White test and Breusch-Pagan. 

The White test is a very popular test in economics for heteroscedasticity of the errors. The test takes the 
approach of conducting a regression on the squared residuals of the model, based on the original 
predictors and the comprehensive set of second order combinations (i.e., the squared predictors and all of 
their combinations). The 𝑅2 of the resulting regression is part of the resulting test statistic, testing the null 
hypothesis that the errors are constant. Thus, a p-value for the test less than the pre-specified 𝛼 results in a 
rejection of the assumption of homoscedasticity of errors. The R statistics package has the White test. 

The Breusch-Pagan (BP) test is an alternative to the White test, again taking a strategy of employing a 
regression on the residuals. This test relies on the normality assumption by use of the F-test. If the linear 
regression line drawn through the residuals has statistically significant parameters, then the BP test rejects 
the assumption of heteroscedasticity of errors. The BP test statistic produces a p-value from the Chi-
squared distribution, where a p-value less than the pre-specified 𝛼 results in a rejection of the assumption 
of homoscedasticity of errors. The R statistics package has the BP test. 

4.2.1.4 Normality of Errors 
The statement of 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) captures the assumption that each error is distributed according to the 
normal distribution. With real world data, the normality assumption is often optimistic. Normally 
distributed error values are uncommon and an assessment of normality can be difficult with relatively 
small sample sizes, as is common with CER construction. The diagnoses and assessment of the normality 
assumption is very important.  

Recalling Section 3.3.1 Ordinary Least Squares (OLS) and the Gauss-Markov theorem, when the 
normality of errors assumption fails, the OLS model still provides the Best Linear Unbiased Estimate of 
the coefficients, as long as the other three assumptions hold. Normality is simply a construct for 
inference, albeit very useful and often essential. As a result, failure of normality still results in an 
unbiased estimator with minimum variance, but severely limits the ability to conduct inference including 
outlier detection, significance testing, and risk analysis. 

4.2.1.4.1 Normality of Errors Visual Tests 
A common way to assess normality when you have many observations is to generate a histogram of the 
residuals. A histogram may help determine if the distribution is symmetrical and bell-shaped. Another 
graphical option is to examine a Normal Quantile-Quantile (Q-Q)61 plot. For more information regarding 
histogram generation, see Section 2.4.3. Once constructed, compare the histogram to the shape of the 
normal distribution. Figure 49 shows an example of a best normal distribution fit overlaid directly on top 
of the histogram.  

                                                      

61 An alternate display of the Quantile-Quantile is the Probability-Probability (P-P) plot. Construction of both is very 
similar and both convey the same information. CO$TAT makes use of the P-P plot. 
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The selection of the bin size has a huge influence on the shape of the histogram. There is more than one 
accepted approach to estimating bins and as a result, histograms can end up being very subjective. The 
histogram provides a good starting place to understanding the behavior of the residuals, but is insufficient 
in developing a conclusive result.  

 

Figure 49: Histogram of Standard Residuals 

The Q-Q plot is the preferred graphic to examine the behavior of data relative to any distribution of 
interest. A normal Q-Q plot is constructed by plotting the theoretical quantiles of the normal distributions 
on the 𝑎-axis and the observed standardized residual quantiles on the 𝑦-axis. Practically speaking, the plot 
can be thought of as a predicted versus actuals plot for the residuals. If the data are exactly normal, then 
the plotted standardized residuals fall in a perfectly straight line. Deviations from a line indicate 
deviations from the normal distribution. 

Figure 50 shows four example Q-Q plots. Case A illustrates an example of normality. While not a perfect 
fit to a line, this is a strong case to accept the normality assumption. Cases B and C indicate some other 
type of behavior. Perhaps the tails are longer, or the distribution is skewed. Accepting normality in either 
of these two cases is unlikely and an alternate model should be considered. Case D is not ideal, but 
sufficient to accept normality. There seems to be behavior in the tails, which are non-normal, but nothing 
substantial. While an alternate model may be considered, plots such as Case D are often accepted. 
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Figure 50: Normal Q-Q Plot Examples 

Assessing a normal Q-Q plot takes practice. With only a few observations, a perfect linear fit is 
uncommon. Unless the deviation is severe with a distinct trend, the normality assumption is often 
accepted. Much like with the independence of the errors assumption, apparent problems with the Q-Q plot 
can also stem from a violation of the linearity assumption, covered in more detail in Section 4.2.1.5 
Linearity. 

4.2.1.4.2 Formal Tests for Normality 
Visual tests are the main assessment of assumptions. The following paragraph describes several Formal 
tests that can be useful for validating the assumption of normality. The Anderson-Darling (AD) test, the 
Shapiro-Wilk (SW) test, the Kolmogorov-Smirnov (KS) test, and the Pearson Chi-squared (Chi-squared) 
test. . 

The Kolmogorov-Smirnov (KS) tests for normality by examining the cumulative distribution function 
(CDF) of the normal distribution compared to the empirical distribution function (EDF) of the residuals. 
If the data are normally distributed, then the two curves lay on top of each other. The KS test statistic is 
the largest deviation between the two curves and tests the null hypothesis that the data does follow the 
distribution of interest (e.g., normal). P-values that are less than the pre-specified 𝛼 results in a rejection 
of the assumption of normality of errors. 

The Anderson-Darling (AD) test is a refinement of the KS test, placing more weights in the tails of the 
distribution. The AD statistic tests the same null hypothesis that the data follows the distribution of 
interest (i.e., normal). P-values less than the pre-specified 𝛼 results in a rejection of the assumption of 
normality of errors. 

The Shapiro-Wilk (SW) test is specifically for normality and tests the assumption that the data are 
normally distributed. The test statistic calculates weighted deviations of the sample data from the normal 
distribution and performs very well in comparison to the other normality tests. The SW statistic tests the 
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same null hypothesis that the data does follow the distribution of interest (i.e., normal). P-values less than 
the pre-specified 𝛼 result in a rejection of the assumption of normality of errors. 

The Pearson Chi-squared test compares discrete sections, or bins of equal probability, of data to their 
theoretical expectation. This test is best visualized as comparing the heights of each histogram bar to the 
superimposed normal density curve, even though the bin selection methodology differs from a histogram. 
As a result, the Chi-squared test is sensitive to the selected bin widths. There is no universal methodology 
for these selections, but a common approach is to use the Mann-Wald method, divided by 2. Appendix 
A.3.1.1.2 Histogram contains references with more information on this topic. The Chi-squared statistic 
tests the same null hypothesis that the data does follow the distribution of interest (i.e., normal). P-values 
less than the pre-specified 𝛼 result in a rejection of the normality of errors assumption. 

4.2.1.5 Linearity 
The statement of 𝒚 = 𝑿𝑿 captures the assumption of linearity. This assumption states that the response, 
𝒚, is a linear function of the predictors (or transformations of the predictors), 𝑿, and the coefficient 
parameters, 𝑿. When violated, the entire analysis is not considered to be best practice and statistical 
metrics, regardless of apparent quality, are questionable. In some cases, a linear approximation may still 
be appropriate or desired for simplicity, but often a non-linear form or data transformation is required to 
correct the problem. 

Recalling Step 3.3.1 Ordinary Least Squares (OLS) and the Gauss-Markov theorem, when the linearity 
assumption fails, the OLS model still provides the Best Linear Unbiased Estimate of the coefficients. 
However, the issue is now that the linear estimator, regardless of other properties, is questionable. As a 
result, the variances around the coefficients are still minimal and the estimator will still be unbiased 
relative to other linear estimators, but the CER is not an optimal representation of the system modeled. 

4.2.1.5.1 Linearity Visual Tests 
To asses linearity generate a scatter plot, a residual versus predicted plot, and a predicted versus actuals 
plot. For SLR, examine a scatter plot for the single predictor for a linear trend. Curvature in the scatter 
plot indicates a non-linear trend. 

While the scatter plot provides a good starting point, a residual versus predicted value plot, as defined 
previously in Section 4.2.1.2, often provides a better understanding of the model. An ideal result displays 
random scatter around zero, with no apparent patterns. The exception is in the case of non-constant error 
where the residuals can indicate that the linear trend is still appropriate, but heteroscedastic. Figure 51 
displays two of the cases from Figure 48 in Section 4.2.1.3. 
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Figure 51: Non-linear Residual Plots 

Plot C under-fits the model for lower values of 𝑦, over-fits in the middle of the predicted y values, and 
under-fits for larger values of 𝑦. Plot D indicates a similar behavior in the opposite direction. Figure 52 
further illustrates potential nonlinear impacts. 

 
Figure 52: Non-linear Behavior of Residuals 

The predicted versus actuals plot provides similar information as the residual plot. Again, the desired 
outcome is random scatter of the predicted points about the line 𝑦 = 𝑎. If there is an apparent pattern such 
as a clustering, then the linear model may be inappropriate. Figure 53 is an example of two predicted 
versus actuals plots. Plot A demonstrates random scatter supporting the acceptance of the linearity 
assumption. Plot B demonstrates a violation of linearity. 
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Figure 53: Linearity – Predicted versus Actuals Example 

4.2.1.5.2 Formal Tests 
Formal tests designed to assess linearity are uncommon. A visual analysis is considered best practice to 
assess the linearity assumption. 

While this guide presents the assumptions sequentially, assess all four assumptions (Sections 4.2.1.2 
through 4.2.1.5 Linearity) before making a decision regarding model selection.  If all four assumptions 

are acceptable, the next step is 4.3 Model Diagnostics. 

4.2.1.6 Residuals Example 
Table 10: Notional Data to Demonstrate Functional Forms contained the originally normalized cost and 
power data plus adjusted cost values to demonstrate the power, exponential and logarithmic functional 
forms. Figure 54 shows the residual plots from a linear fit performed on the nonlinear data developed in 
those data sets. Even with only nine observations, clear patterns are evident indicating that the residuals 
are not independent of the dependent variable.  

• The “Linear on Power Data” in the upper left illustrates a non-constant variance. This is pattern 
is discussed in detail in 4.2.1.3 Homoscedasticity.  

• The remaining charts show a concave down or concave up pattern. See 4.2.1.4 Normality of 
Errors for a discussion on why these patterns are evidence that a linear fit is likely not the best 
fit.  
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Figure 54: Residual Plots For Linear Fits on Nonlinear Data 

Figure 55 is the residual plot for the linear fit demonstrated in 2.8.1 Linear Functional Form. The pattern 
suggests residuals may not be related to the dependent variable when using the linear form. An ideal 
result displays random scatter around zero, with no apparent pattern.  Figure 55 may not be enough 
evidence to reject the CER, but should be sufficient to motivate further exploration. 

 
Figure 55: Residual Plot For the Example Linear Fit 

 

Recall the OLS example introduced in Section 3.3.1.3 with the response variable, Cost, and predictors , 
Power and Aperture. When the example was run, CO$TAT produced a Standardized Residual plot, 
displayed in Figure 56. The residuals appear to have random scatter about zero. There is no evidence of a 
pattern, indicating the independence of errors assumption may be accepted. 
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Figure 56: Standardized (Internally Studentized) Residual Plot 

The following section includes examples of formal tests that can be performed to verify the visual 
observations: 

• Independence of Errors:  

o Section 3.3.6 Ridge Regression demonstrated a method to address correlation of 
independent variables. Figure 57 is the CO$TAT Ridge Statistics output from that 
example and contains the Durbin-Watson test statistic, 𝐷 = 3.1057. 

  

Figure 57: Durbin-Watson Test Statistic 

A table of critical values for 𝛼 = 0.05, 𝑙 = 7, and 𝑘 = 2 returns 𝐶𝑈 = 1.896 and 
𝐶𝑂 = 0.467. Since 𝐷 = 3.1057 > 𝐶𝑈 = 1.896, the test fails to reject the independence 
of errors assumption, which aligns with the conclusion drawn from Figure 56. 
 

o The remedy for a failed independence of errors assumption often involves employing a 
time series methodology. These methods account for correlation. Section 3.3.2 
Generalized Least Squares (GLS) introduces a framework, which can support 
specification of a correlation matrix, a topic covered in detail by many statistical and 
econometric resources.  
 

IV. Ridge Pertubation Parameter (RPP) & Related Statistics

RPP by Non-iterative Procedure 0.0061
RPP by Iterative Procedure 0.0068
Von Neumann Test for Autocorrelation 3.6234
Durbin-Watson Statistic 3.1057
Determinate of (X'X) 0.1106
Measure of Ill conditioning 9.0400
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• Homoscedasticity:  
o The residuals in Figure 56 appear to have random scatter about zero. There is no 

evidence of a pattern, and this example suggests no problem with the constant variance 
assumption. This is the same plot used to validate the independence of errors 
assumption. With practice, assessment of the independence of errors and constant 
variance assumptions can be done simultaneously. 

o Many statistical packages provide both the White test and the Breusch-Pagan test. To 
illustrate the interpretation of one of these tests, consider the result for the BP test, 
returned by R: 

studentized Breusch-Pagan test 
 
data:  lm(Cost ~ Power + Aper) 
BP = 2.6952, df = 2, p-value = 0.2599 

 
o In this example, p-value = 0.2599 > 0.05 = 𝛼. Indicating the BP test fails to reject the 

null hypothesis that the errors are homoscedastic. This result agrees with the visual 
analysis from Figure 56. 

o Weighted Least Squares (WLS) regression is a common approach to remedy a failure of 
the homoscedasticity assumption. WLS weights the residuals of each data point 
separately when minimizing the least squares, adjusting them to be homoscedastic in this 
scaled space. Section 3.3.2.2 Weighted Least Squares (WLS) covers this topic, providing 
four common methodologies for the weighted estimation. Method 1 is a general 
approach that can model many different types of weights. Methods 2-4 are particularly 
useful in multiplicative error cases, such as Case B in Figure 48. 

• Normality:  
o A visual test for normality is illustrated in Figure 58.  On the left are the standardized 

residuals from a linear fit of the electronics data. While the statistics of the fit are very 
good, the histogram suggests the normality assumption is not valid. However, the log 
linear functional form with independent variables 𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 (𝑘𝑘𝐴𝐴𝐴𝐶𝑆2) and FFP are 
preferred. . Note the standardized residuals are assessed in fit space. 

 
Figure 58: Histogram of Standardized Residuals 
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o As part of the output, CO$TAT produced a P-P plot, displayed in Figure 59. CO$TAT 
uses a P-P plot rather than a Q-Q plot, but the interpretation and information is the same. 

 

Figure 59: Normal Probability-Probability Plot from CO$TAT 

o Many statistical packages provide all four of the normality tests. To illustrate the 
interpretation of these tests, consider the results for the Shapiro-Wilk and Kolmogorov-
Smirnov tests, returned by R: 

Shapiro-Wilk normality test 
 
data:  rstudent(lm(Cost ~ Power + Aper)) 
W = 0.8759, p-value = 0.2088 
 
One-sample Kolmogorov-Smirnov test 
 
data:  rstudent(lm(Cost ~ Power + Aper)) 
D = 0.2293, p-value = 0.7823 
alternative hypothesis: two-sided 

 
o In this example, both of these tests return a p-value far greater than 𝛼 = 0.05. Both the 

SW and KS tests fail to reject the null hypothesis in favor of the alternative —, which 
assumes the errors are normally distributed. This result agrees with the visual analysis 
from Figure 59. 

o It is common practice to accept (with documentation) a minor violation of the normality 
assumption. However, there are several approaches to remedy the violation if the 
deviation is too severe. When the tails are too long or skewed, a transformation of the 𝒙 
or 𝒚 variables often remedies the problem. Thus, proceeding to Section 3.3.3 and fitting 
a Log-Linear Model may be appropriate. With a skewed distribution, another option is to 
assume a different distribution for the errors. If selected from the exponential family, 
such as the log-normal distribution, the Generalized Linear Model (GLM) can be utilized 
to fit the model. Accepting the normality assumption when the evidence suggests 
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otherwise is common practice in cost analysis. In extreme cases, use a transform to 
attempt to correct the problem, or fit a GLM with an alternate distributional assumption. 

• Linearity: 
o Recall the OLS example introduced in Section 3.3.1.3 with response variable 𝐶𝐶𝑠𝐴 and 

predictors 𝑃𝐶𝑝𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. As part of the output, CO$TAT produced a 
Standardized Residual plot, displayed in Figure 56, and an Actual vs. Predicted plot, 
displayed in Figure 60. The predicted versus actuals plot in Figure 60 shows no 
evidence of a pattern and indicates no problem regarding the linearity assumption. This 
plot can also help validate the independence of errors and constant variance assumptions. 
Figure 60 supports accepting the linearity assumption. 

 

Figure 60: OLS Actual vs. Predicted Plot 

o If the pattern does not support linearity, the analyst may choose to transform the 
variables and fit the Log-Linear model or use an alternative model form.  

o Violation of the linearity assumption is the most critical assumption to address. These 
assumptions indicate the linearity form may not be optimal for this example. Without 
satisfying the linearity assumptions, the supporting statistics become meaningless when 
they are not satisfied.  
 

While this guide presents the assumptions sequentially, assess all four assumptions (Sections 4.2.1.2 
through 4.2.1.5 Linearity) before making a decision about any single assumption. Only after assessing 

each of them, make a decision on which to address. If all four assumptions are acceptable, the next 
step is to proceed to 4.3 Model Diagnostics. 

4.2.2 Weighted Least Squares (WLS) 
Section 5.2.2 introduced the Generalized Least Squares (GLS) Model in two forms: the generic case and 
Weighted Least Squares (WLS). Typical use of the GLS model is in time series applications and is 
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beyond the scope of this guide. WLS application is similar to OLS application but introduces a weight 
term. Recalling Section 3.3.2.2, the WLS model is, 

𝒚 = 𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝑾−1) and 𝑾 = 〈𝒘〉 

4.2.2.1 Residuals 
The residual error is the difference between the actual value and the predicted value. This is the raw 
residual, and for OLS is, 

𝒆𝑒𝑜𝑜 = 𝒚 − 𝒚� 
= 𝒚 − 𝑿𝑿� 

However, in WLS, the 𝑎 and 𝑦 variables are transformed into a scaled space with constant variance. 
Therefore, the residuals become,  

𝒆𝑟𝑜𝑜 = 𝑾
1
2𝒚 −𝑾

1
2𝑿𝑿� 

With this logic, the same discussion on standardizing residuals applies to WLS as with OLS (Section 
4.2.1). Similarly to OLS, the internally studentized residual is, 

𝐴𝑖 =
𝐴𝑟𝑜𝑜,𝑖

𝜎��1 − ℎ𝑖𝑖
 

Where, 

𝜎� = √𝑀𝑆𝐸 
ℎ𝑖𝑖 = 𝐶𝑡ℎ diagonal entry of the hat matrix,𝑯 

𝑯 = 𝑿∗�𝑿∗′𝑿∗�−1𝑿∗′ 

𝑿∗ = 𝑾
1
2𝑿 

The internally studentized residual follows an approximate standard t-distribution, with a mean of zero 
and variance of one. Similar to OLS, the following modification results in the externally studentized (or 
deleted) residual, 

𝐴𝑖,−1 =
𝐴𝑟𝑜𝑜,𝑖

𝜎�𝑖,−1�1 − ℎ𝑖𝑖
 

Where, 

𝜎�𝑖,−1 = √𝑀𝑆𝐸 (calculated without data point 𝐶) 
ℎ𝑖𝑖 = 𝐶𝑡ℎ diagonal entry of the hat matrix, 𝑯 
𝑯 = 𝑿∗�𝑿∗′𝑿∗�−1𝑿∗′ 

𝑿∗ = 𝑾
1
2𝑿 

The internally studentized residual is acceptable to use and can be summarized by most software 
packages, including CO$TAT. Many other statistical software packages provide the option to return the 
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externally studentized residual, including SAS and R, referred to as ‘rstudent’, and Minitab, referred to as 
the ‘deleted residual’. When available use the externally studentized residual. Plots of the studentized 
residual provide a means of visually assessing fit characteristics. 

4.2.2.2 Independence of Errors 
The statement of 𝜺 ~ 𝑁(𝟎,𝑾−1) and 𝑾 = 〈𝒘〉 captures the assumption that each error is distributed 
independently with their respective variances captured by 𝒘. Perform the same analysis as covered in 
Section 4.2.1.2, but now on the WLS standardized residuals. 

Recalling Step 3.3.2.2 and the Gauss-Markov theorem, when the independence of errors assumption fails, 
the WLS model no longer provides the Best Linear Unbiased Estimate of the coefficients. As a result, the 
variances around the coefficients may be inflated. However, the estimator is still unbiased. 

4.2.2.3 Independence of Errors Example 
Recall the WLS example introduced in Section 3.3.2.2 with response variable Cost and predictor Power. 
This example demonstrates the results produced by WLS, compared to the OLS fit. When the regression 
was run, CO$TAT produced a Standardized Residual plot, displayed in Figure 61 and Figure 62, for 
OLS and WLS, respectively. 

 
Figure 61: OLS Standardized Residual Plot  

 
Figure 62: WLS Standardized Residual Plot 

Figure 61 displays random scatter. No pattern is obvious, suggesting a violation of the independence of 
errors assumption. Figure 62 appears to be very similar and leads to the same conclusion. The similarities 
in the plots suggest the use of WLS is not resulting in significant changes to the residuals. The OLS 
model is preferable in this example because the WLS model does not significantly improve residual 
performance. 
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While this guide presents the assumptions sequentially, assess all four assumptions (Sections 4.2.2.2 
through 6.2.2.4) before making a decision about any single assumption. Only after assessing each of 
them, make a decision on which to address. If all four assumptions are acceptable, the next step is to 
proceed to run 4.3 Model Diagnostics. 

A failed independence of errors assumption often involves employing a time series methodology—, 
which is beyond the scope of this guide. These methods account for correlation between the residuals, or 
time periods, and attempts to build these relationships directly into the model. Section 3.3.2 Generalized 
Least Squares (GLS) introduces a framework to address correlation impacts. The analyst is recommended 
to proceed with their analysis even in the presence of minor independence concerns.  

4.2.2.4 Homoscedasticity 
The statement of 𝜺 ~ 𝑁(𝟎,𝑾−1) and 𝑾 = 〈𝒘〉 captures the assumption that the error term has a variance 
proportional to 𝒘. Normalize the residuals for 𝑾 and then validate them in the same way as with OLS. 

Perform the same analysis as covered in Section 4.2.1.3, but now with 𝑾
1
2𝑿 and 𝑾

1
2𝒚 instead of 𝒙 and 𝒚 

for scatter plots, and on the WLS standardized residuals. 

Recalling Step 3.3.2.2 and the Gauss-Markov theorem, when the independence of errors assumption fails, 
the WLS model no longer provides the Best Linear Unbiased Estimate of the coefficients. As a result, the 
variances around the coefficients may be inflated. However, the estimator is still unbiased. 

4.2.2.5 Homoscedasticity Example 
Recall the WLS example introduced in Section 3.3.2.2 with response variable 𝐶𝐶𝑠𝐴 and predictor 𝑃𝐶𝑝𝐴𝐴. 
This example demonstrates the results produced by WLS, compared to the OLS fit. When the regression 
was run, CO$TAT produced a Standardized Residual plot, displayed in Figure 61 and Figure 62, for OLS 
and WLS. 

In this example, Figure 61 does not indicate a clear violation of homoscedasticity. The model was refit 
using WLS and Figure 62 illustrates the weighted residuals from this analysis. The resulting standardized 
residual plot also highlights homoscedastic behavior of random scatter and no pattern. 

If the WLS model did not address the heteroscedasticity concern, then fit a new WLS model with a 
different set of weights. Section 3.3.2.2 Weighted Least Squares (WLS) suggests a few methods for 
selecting weights.  

4.2.2.6 Normality of Errors 
The statement of 𝜺 ~ 𝑁(𝟎,𝑾−1) and 𝑾 = 〈𝒘〉 captures the assumption that each error is distributed 
according to the normal distribution. Perform the same analysis as covered in Section 4.2.1.4 Normality 
of Errors, but now on the WLS standardized residuals. 

Recalling Step 3.3.2.2 and the Gauss-Markov theorem, when the normality of errors assumption fails the 
WLS model still provides the Best Linear Unbiased Estimate of the coefficients, as long as the other three 
assumptions hold. Normality is a simply construct for making model selection decisions, albeit very 
useful and often essential. As a result, failure of normality still results in an unbiased estimator with 
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minimum variance, but severely limits the ability to conduct inference including outlier detection, 
significance testing, and risk analysis. 

4.2.2.7 Normality of Errors Example 
Recall the WLS example introduced in Section 3.3.2.2 with response variable 𝐶𝐶𝑠𝐴 and predictor 𝑃𝐶𝑝𝐴𝐴. 
This example demonstrates the results produced by Method 3, compared to the OLS fit. When the 
regression was run, CO$TAT produced a Probability Plot (P-P), displayed in Figure 63 and Figure 64, 
for OLS and WLS. 

 
Figure 63: OLS P-P Plot 

 
Figure 64: WLS P-P Plot 

In this example both, Figure 63 and Figure 64 suggest normality. Ignoring the point labeled “A”, the 
remaining residuals follow a moderately straight line with no apparent patterns. Point A represents a 
deviation from the other data points and may violate normality assumptions. However, this is common 
when working with real-world data, and does not warrant rejection of the assumption. The presence of 
non-constant variance (or multiplicative error) in the dataset did not affect the ability to accept the 
normality assumption.  

It is common practice to accept (with documentation) a minor violation of the normality assumption. 
However, there are several approaches to address a violation where the deviation is too severe. When the 
tails are too long or skewed, a transformation on 𝒙 or 𝒚 often remedies the problem—indicating that 
Section 3.3.3 and fitting a Log-Linear Model may be appropriate. With a skewed distribution, another 
option is to assume a different distribution for the errors.  

If selected from the exponential family, such as the log-normal distribution, the Generalized Linear Model 
(GLM) can be utilized to fit the model. In summary, accepting the normality assumption, with cautions, is 
common practice. However, extreme cases sometimes call for the use a transform to mitigate any 
concern. 
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4.2.2.8 Linearity 
The assessment of the linearity assumption is the same as with OLS. The scatter plot and predicted versus 
actual plots will be identical. The residual plot using the WLS residuals may make the results more clear, 
but the OLS residuals should provide the same conclusion. Section 4.2.1.5 Linearity to discuss this topic 
in greater detail.  

4.2.3 Transforms and the Log-Linear Model 
Model transformations by themselves are not a standalone regression methodology. Transformations 
involve taking the predictor and/or response variable(s) and applying a transformation. In the case of the 
Log-Linear model, a transformation is done on 𝒚, and sometimes 𝒙. After transforming the selected 
variables, run the OLS model on the transformed variable set, 

𝒚∗ = ln (𝒚) 
𝑿∗ = ln (𝒙) 

Now, validate the OLS assumptions using the process detailed in Section 4.2.1, only in the transformed 
space, {𝑿∗,𝒚∗}. 

4.2.4 Generalized Linear Model (GLM) 
Section 3.3.4 introduced the Generalized Linear Model (GLM), with more details provided in Appendix 
A.4.4. The assumptions for GLM are different than OLS because GLM is a method of maximum 
likelihood, not of least squares. GLM application is an advanced topic covered in more detail under 
section A.4.4.5 Validate CER (Assumptions). 

4.2.5 Non-linear Least Squares (NLS) 
Section 3.3.5 introduced the Non-linear Least Squares (NLS) methodology. The assumptions for NLS are 
less strict than for other models, which provides greater flexibility when choosing a functional form to fit 
the data. The lack of well-defined assumptions unfortunately translates into less desirable verification 
processes and interpretations of the model. The same principles from OLS extend to NLS where 
assumption violations may influence the model. Recalling Section 3.3.5, the NLS model is, 

𝒚 = 𝐶(𝑿;𝑿) + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝚺) and 𝚺 = 〈𝒘−1〉 

Theorems do not govern the impacts of the violation of this assumption (e.g., bias, variance inflation) in 
the way the Gauss-Markov theorem governs OLS. Rarely are the NLS assumptions examined with the 
same rigor as the other models discussed in this handbook. Since NLS is used when other models are not 
feasible, the focus shifts to concepts covered in the remaining sections of Step 4 (e.g., minimizing model 
error). 

4.2.5.1 Residuals 
The residual error is the difference between the actual value and the predicted value. This is the raw 
residual and for NLS is, 

𝒆𝑛𝑜𝑜 = 𝒚 − 𝐶(𝑿;𝑿�) 
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Similar to OLS, these are not the correct residuals to use; standardization is required. This process is more 
complex for NLS, being dependent on the final iteration of the numerical algorithm. Refer to the residual 
standardization process discussed in Section 4.2.1. 

4.2.5.2 Independence of Errors 
The statement of 𝜺 ~ 𝑁(𝟎,𝚺) and 𝚺 = 〈𝒘−1〉 captures the assumption that each error is distributed 
independently and is validated using the same OLS methods, but now on the NLS residuals. Perform the 
same analysis as covered in Section 4.2.1.2, but now on the NLS standardized residuals. 

4.2.5.3 Homoscedasticity 
The statement of 𝜺 ~ 𝑁(𝟎,𝚺) and 𝚺 = 〈𝒘−1〉 captures the assumption that the error term has a variance 
proportional to 𝒘. Perform the same analysis as covered in Section 4.2.1.3, but now with the NLS 
standardized residuals. 

4.2.5.4 Normality of Errors 
The statement of 𝜺 ~ 𝑁(𝟎,𝑾−1) and 𝑾 = 〈𝒘〉 captures the assumption that each error is distributed 
according to the normal distribution. Perform the same analysis as covered in Section 4.2.1.4, but now on 
the NLS standardized residuals. 

4.2.5.5 Functional Form 
Assess the functional form in the same way as with OLS, but with the NLS residuals. With a single 
predictor, examine a scatter plot to determine if the curve is a reasonable fit. Examine the residual plot 
and predicted versus actuals plot for the same types of information as introduced in Section 4.2.1.5 
Linearity with OLS. 

4.2.6 Ridge Regression 

Ridge Regression solves for the estimated coefficient vector, 𝑿�, under a size restriction. No alterations are 
made to 𝒙, 𝒚, or to any of the predicted value calculations. As a result, calculate the residuals using the 
same OLS method. Validate the OLS assumptions using the process detailed in Section 4.2.1.  

4.2.7 Restricted Least Squares (RLS) 
Restricted Least Squares (Section 3.4 Estimation with Prior Information) solves for the estimated 
coefficient vector, 𝑿�, under a set of restrictions. No alterations are made to 𝒙, 𝒚, or to any of the predicted 
value calculations. As a result, calculate the residuals using the same OLS method. Validate the OLS 
assumptions using the process detailed in Section 4.2.1.  

 Model Diagnostics 4.3
After validating the model assumptions, the next step is to conduct model diagnostics on the CER. There 
may be outlier or leverage points with high influence on the model skewing the results. Additionally, 
independent variables may be highly correlated to each other, creating problems with the model statistics 
examined in Section 4.4 Model Significance. This is the multicollinearity problem described in Section 
4.3.2.  
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4.3.1 Influential Points 
High influence points are observations with larger impacts on the model relative to the other points. One 
way, which an observation can have high influence, is in the predictor space. This is referred to as a 
leverage point, and has a value far away from the rest of the data, creating a “lever” effect on the model. 
For example, if using weight to predict cost and one system weighs substantially more than the others, the 
mathematics cause the much heavier system to affect the model coefficients more than the other points. 

– Terminology – 

High influence points (HIPS) come in two forms: in the predictor space (x) or in the response space (y). 

Leverage points excessively influence the model in the predictor space. 

Outlier points excessively influence the model in the response space. 

Using the same example as before, now suppose all the systems weigh about the same, but one has a 
substantially greater cost. This observation may be an outlier, skewing the model away from the actual 
trend of the data. 

It is possible that an observation is extreme in both the predictor and the response space. This scenario 
results in the observation of interest having a large impact on the model, heavily skewing the model away 
from the actual trend of the data. 

Assess leverage points and outliers simultaneously to understand the full impact of the observations on 
the model. The remainder of this section discusses visual tests and numerical metrics to assess both of 
these types of high influence points. 

Each of these metrics can be found in Table 23 which shows the Outlier Analysis Table from CO$TAT 
for the multivariable example problem introduced with OLS in Section 3.3.1.3. 

Table 23: Multivariable OLS Example Outlier Analysis Table 

 

4.3.1.1 Standardized Residuals 
The most commonly used metric to assess outliers is the residual. Section 4.2.1 introduced the different 
types of residual – raw, internally studentized, and externally studentized. Examine the standardized 
residuals (externally studentized, if available, internally studentized otherwise) against a rule-of-thumb to 

Figures 4 and 9 represent observations that lack all selected independent variables.  
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flag observations as potential outliers. The column marked “Std. Residual” in Table 23 is the internally 
standardized residual returned from CO$TAT 

A common rule-of-thumb for assessing standardized residual values is ± 2, which can be interpreted as a 
rough 95% level of confidence, depending on the number of degrees of freedom. For smaller datasets 
(i.e., n < 10), ± 3 may be more representative. 

Note that these points are marked only as potential outliers because with 100 observations, expect about 
five to be flagged as outliers when assuming a 95% level of confidence. 

To illustrate the importance of standardizing the residuals, consider the scatter plot and regression line in 
Figure 65. The red dashed line in the plot on the left signifies the true model from which the data were 
generated. The blue dashed line in the plot on the right is the linear model fit through the data. 

 
Figure 65: Error verses Residual 

The data point in the top right is manually adjusted to be an outlier, while the remainder of the data follow 
a linear trend. Figure 66 presents a comparison of the residuals. 
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Figure 66: Comparison of Residual Types 

The top left plot shows the error associated with the aforementioned outlier point. This is the actual error. 
In this case, the error is known since the data were simulated, but in real world situations, this is never the 
case. The top right plot shows the raw residuals, and the extreme point does not stand out. In fact, there 
are four more points with a greater residual in magnitude. The lower left plot shows the internally 
studentized residuals and the extreme point is correctly flagged as a potential outlier. The lower right plot 
shows the externally studentized residuals with the outlier value well above the rule-of-thumb cutoff of 
±2. 

4.3.1.2 Leverage Value 
The most commonly used metric to assess leverage is the diagonal value of the hat, or projection, matrix. 
This metric is also simply referred to as the leverage value. The hat matrix is named as such because it 
“puts the hat on 𝒚”, meaning 𝒚� = 𝑯𝒚. It is defined as, 

𝑯 = 𝑿(𝑿′𝑿)−1𝑿′ 

The hat matrix is a function of only the predictor values, and its diagonal entries, notated ℎ𝑖𝑖, represent the 
leverage each observation has on the model. The column marked “Leverage” in Table 23 is the hat 
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diagonal leverage value returned from CO$TAT. Leverage values and leverage plots can be generated 
using other analytical tools (e.g., SAS JMP, R, MS Excel) 

A general rule-of-thumb is that leverage values greater than 2𝑝
𝑛

 or 3𝑝
𝑛

 (where 𝐴 = 𝑘 + 1, or the number of 
parameters in the model) may be of concern for having high leverage on the model. 

4.3.1.3 Cook’s Distance 
Cook’s Distance (Cook’s D)62 is a metric to assess overall influence of a point on the model, that is, in 
both the 𝒙 and 𝒚 directions. Cook’s D calculates a standardized distance between the coefficients, and the 
coefficients calculated in the absence of the observation of interest. The column marked “Cook’s 
Distance” in Table 23 is Cook’s D value returned from CO$TAT using the following formulation, 

𝐷𝑖 =
�𝑿� − 𝑿�−𝒊�

′(𝑿′𝑿)�𝑿� − 𝑿�−𝑖�
𝐴𝜎�2

 

Where, 

𝑿�−𝑖 = Coefficient vector calculated without observation 𝐶 
𝜎�2 = Mean Squared Error (MSE) 

An equivalent derivation method is, 

𝐷𝑖 =
1
𝐴𝜎�2

�(𝑦�𝑗 − 𝑦�𝑗,−𝑖)
𝑛

𝑗=1

  

Where, 

𝑦�𝑗,−𝑖 = Predicted value calculated without observation 𝐶 
𝜎�2 = Mean Squared Error (MSE) 

A good rule-of-thumb is that a data point merits serious investigation if Cook’s Distance (𝐷𝑖) exceeds the 
50th percentile of the 𝐹(𝐴,𝑙 − 𝐴) distribution; the 𝐹-distribution with 𝐴 and 𝑙 − 𝐴 degrees of freedom 
where 𝑙 is the number of observations (including the potential outlier) and 𝐴 is the number of coefficient 
parameters in the regression model (including the y-intercept).  

At the 50th percentile, 𝐹(𝐴,𝑙 − 𝐴) ≈ 1, the rule-of-thumb can be expressed as 𝐷𝑖 > 1. 

4.3.1.4 Leave-One-Out Metrics 
Cross validation methods provide additional numeric ways to identify and assess influential points. In 
particular, “leave-one-out” regression can provide insights into how a single observation influences the 
                                                      

62 Additional metrics exist beyond Cook’s D. While not covered in this guide, DFFITS and DFBETAS are two other 
popular diagnostic metrics to assess influence. 
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overall model. Leave-one-out performs the regression n times, once for each observation with that 
specific observation omitted. This concept is discussed in Section 4.5.2.2. In the OLS case, several 
metrics can be calculated for assessing influential points instead of having to go through the actual 
mechanics of performing the regression n times. 

The externally studentized residual is actually a leave-one-out metric. The residual and the externally 
studentized concept is discussed in prior sections, including Section 4.3.1.1. Recall that this residual is 
calculated using a σ ̂^2 calculated under a leave-one-out method. 

DFFITS is a metric similar to the externally studentized residual and compares how far off an observation 
is predicted from its observed value. This metric is largely redundant of information derived from Cook’s 
D. The following is a reasonable rule-of-thumb for when DFFITS is considered to be “large”, signaling an 
influential point: 

𝐷𝐹𝐹𝐼𝑇𝑆 > 2�
𝐴
𝑙

 

DFBETAS is a metric that compares how much each regression coefficient changes based on the removal 
of each observation. If there are k independent variables, then k different values of DFBETAS are 
calculated per observation. Again, this information can be redundant to that of Cook’s D. The following is 
a reasonable rule-of-thumb for when DFBETAS is considered to be “large”, signaling an influential point: 

𝐷𝐹𝐷𝐸𝑇𝐴𝑆𝑖 > 2�
1
𝑙

 

Overall, leave-one-out methods for identifying outliers can be useful. A sound strategy is to consider both 
the studentized residual and Cook’s Distance. DFFITS and DFBETAS can be examined if desired, 
especially if utilizing a statistical package where they are calculated automatically. 

4.3.1.5 Visual Tests 
Identify high influence points visually by plotting the previously discussed metrics. Visualization of data 
are discussed earlier in this text and examples provided below.  
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Figure 67: Diagnostic Plots for Section 3.3.1.2 OLS Example 

Plot A: Standardized Residuals  
To assess outliers, examine the same residuals versus predicted plots used to validate 
assumptions. Since the interest is now in the magnitude, it is convenient to plot the absolute value 
of the residuals. Observations standing out from bulk of the data and are above the rule-of-thumb 
cutoff line of 2 are of concern. In this example, one data point falls above the rule-of-thumb 
cutoff. The value has a standardized residual slightly greater than 3, which warrants a closer look.  
 

Plot B: Leverage Plot 
To assess leverage, create a scatter plot with the observation number on the 𝑎-axis, the leverage 
value (ℎ𝑖𝑖) on the 𝑦-axis, and the rule-of-thumb line drawn as a frame of reference. In this 
example, no points stick out as being extreme from the others. While some are right around the 
cutoff line, none appear to “stick out” enough to warrant additional attention. 
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Plot C: |Residual| versus Leverage 
To assess both outliers and leverage points at the same time, create a scatter plot with the leverage 
value on the 𝑎-axis and the absolute value of the standardized residual on the 𝑦-axis. Add the 
respective rule-of-thumbs dividing the plot into four quadrants. The lower left quadrant contains 
observations with little concern for either being an outlier or a leverage point. The bottom right 
contains points with high leverage, but that are not potential outliers. The top left contains points 
without high leverage, but that may be potential outliers. Finally, the top right quadrant contains 
the points of concern; high leverage potential outliers. Again, the rule-of-thumbs provide a good 
starting place, but points sticking out from the rest are those of the highest concern. In this 
example, no points appear to be of major concern. No points fall above the cutoffs. The results 
agree with the conclusions drawn in Plot B and Plot C. 
 

Plot D: Cook’s Distance 
To assess points as either outliers and/or leverage points at the same time, create Cook’s D plot, 
with the observation number on the 𝑎-axis and the Cook’s D statistic on the 𝑦-axis. Add the rule-
of-thumb cutoff to the plot. Investigate those points crossing the rule-of-thumb threshold. In this 
example, Project 5 slightly stands out by being above the cutoff produced at the 50th percentile of 
the F-distribution. The Cook’s Distance statistic is in agreement with the previous diagnostics and 
is not bounded at 1 (as may be suggested by the plot). 

The leave-one-out metrics can be plotted similarly to Cook’s Distance. Simply plot DFFITS and/or 
DFBETAS with their rule of thumb. Look out for values above the rule of thumb line, or ones that stand 
out from the remainder of the data. 

4.3.1.6 Extension to Other Model Forms 
The discussion of influence points focuses on the OLS model. However, these principles translate directly 
to more complex functional forms. The interpretations are nearly identical, with some mathematical 
subtleties in the background. Significant differences, where they exist, are called out and discussed. For 
the purposes of this guide, it is sufficient to understand that while the metrics may be calculated 
differently, statistical software packages output the material in a very similar fashion.  

Statistical packages output leverage values and standardized residuals for all functional forms. For some, 
such as Generalized Least Squares (GLS), Transformable Linear and the Log-Linear Model, and Ridge 
Regression, the calculations are exact and based on formulas very similar to – or even transformed to be 
equal to – those of OLS. For others, such as the Generalized Linear Model (GLM) and Non-linear Least 
Squares (NLS), the results are asymptotical and based on the convergence properties of normal theory 
(Appendix A.3.3.1.2 Small Data Sets – Asymptotic Results).  

The GLM often has better properties than NLS due to characteristics of Maximum Likelihood Estimation 
(MLE) (Appendix A.4.7.2). While these asymptotic metrics are different than OLS, their analyses and 
interpretations can be conducted under the same framework. 

Additionally, leave-one-out regression, a type of cross validation, can calculate these metrics easily with 
modern computing power. This is discussed more thoroughly in Section 4.5.2.1. 
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The assessment of influence points may uncover several observations requiring further investigation. The 
statistics do not decide whether or not to remove a data point. Points with high leverage on the model that 
are not outliers are rarely of concern. Encountering observations with standardized residuals greater than 
two is expected. Simply having a large standardized residual does not dictate that the point should be 
removed. In fact, removing potential outlier points almost always results in more points being flagged as 
potential outliers, iteratively removing data until very little is left. 

Small sample data sets further magnify the problem. Many CERs have relatively few observations. An 
observation, which appears to be an outlier, may actually be a very useful piece of information. Collecting 
more data would perhaps yield similar results and the observation would no longer be an outlier. Data are 
an extremely valuable commodity, and thus only remove points after a thorough examination.  

After examining potential outliers in more detail, the next step is to assess multicollinearity. 

4.3.2 Multicollinearity 
Multicollinearity is the condition where multiple independent variables are highly correlated with each 
other, as discussed in Appendix A.2.1.4. This correlation makes it difficult for the model to distinguish 
between the predictors, resulting in high degrees of uncertainty, or variance, around the estimators. When 
correlation between two predictors occurs, the existence causes singularity of the covariance matrix. In 
fact, when perfect (or near perfect) correlation exists, calculation of the regression coefficients and 
respective statistics is impossible. Figure 68 shows weak correlation between two predictors, 𝒙1 and 𝒙2, 
on the left, and strong correlation on the right.  

  
Figure 68: Weak and Strong Correlation Between Predictors 

The presence of multicollinearity can significantly impact model prediction accuracy: 

(1) Coefficients have inflated standard errors. As a result, the model may have no significant 
predictors, despite being statistically significant as a whole. Section 6.4 covers model and 
variable significance. 

(2) Coefficient estimates may not be logical. Predictor coefficients may have the wrong sign (e.g., 
negative when they should be positive) and be extremely large in magnitude. This scenario could 
be due to choice of model form or interrelated data.  
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(3) Prediction properties are poor. Multicollinearity causes a hidden extrapolation problem, 
resulting in poor prediction and excessively wide confidence intervals (Step 5: Characterize 
Uncertainty). 

While multicollinearity can be examined at a high level by use of visuals, the most reliable diagnostics are 
the numerical metrics. In the case of severe multicollinearity, many software packages will return an error 
referring to singularity of the covariance matrix. Encountering this error signals that multicollinearity may 
be a severe problem. The most effective way to diagnose multicollinearity is by rule-of-thumb cutoffs on 
statistical metrics. The following sections discuss two of the most common metrics: the correlation matrix 
and variance inflation factors (VIFs). 63 

4.3.2.1 Numerical Metrics 
The first way to identify multicollinearity is to look at the correlation matrix. The correlation matrix 
contains the pairwise correlations between each predictor. 

The correlation matrix with more than two independent variables is insufficient for identifying 
multicollinearity problems. A generic rule-of-thumb is that a pairwise correlation above 0.8 indicates 
potential severe problems with multicollinearity. However, research shows that correlations much lower 
can cause severe problems and therefore other metrics must be used in addition to the correlation matrix.  

Table 24 presents example data to illustrate multicollinearity impacts with four independent variables.  

Table 25 shows the resulting correlation matrix for this data set. In this example, 𝒙1, 𝒙2, 𝒙3, and 𝒙4 all 
appear to be highly correlated (over 80%). 

Table 24: Multicollinearity Data Example 

Observation 𝒙1 𝒙2 𝒙3 𝒙4 𝒚 

1 465 9,264 2389 564 127,477 

2 419 9,017 2210 517 127,092 

3 537 10,673 2803 666 152,717 

4 515 10,305 2456 615 146,827 

5 536 10,186 2434 586 147,403 

6 530 10,290 2650 644 149,954 

7 466 10,271 2405 585 156,673 

8 522 10,437 2689 636 141,290 

9 494 9,762 2428 571 145,770 

                                                      

63 This is not a comprehensive list of metrics. The use of eigenvalues via the spectral decomposition is another 
popular way to assess multicollinearity. This metric is the Condition Number and is provided by many statistical 
packages. 
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10 430 8,492 2053 536 133,256 

11 475 9,584 2446 568 118,372 

12 511 9,594 2638 609 125,825 

13 495 9,294 2500 630 119,035 

14 601 12,013 2871 685 171,826 

15 642 12,736 3217 789 168,742 

 

Table 25: Multicollinearity Data Example Correlation Matrix 

 

Table 25 would indicate there are several independent variables that are highly correlated. The Variance 
Inflation Factor (VIF) is another useful tool to identify multicollinearity. When there are more than two 
independent variables, VIF helps identify the correlated independent variables with the most impact on 
model variability. VIFs are calculated as the diagonal entries of the inverse of the correlation matrix. The 
VIF provides a summary of the impact on the variance, for each individual predictor. 

A generic rule-of-thumb for VIFs is values greater than 5 may be cause for concern, and values greater 
than 10 indicate one or more independent variables should be removed from the model. 

Inverting the correlation matrix presented in Table 25, the following diagonal entries are obtained: 12.9, 
8.5, 14.6, and 15.0, for 𝒙1, 𝒙2, 𝒙3, and 𝒙4. Going back to the Ridge example, the VIF’s can be verified by 
CO$TAT in the Multicollinearity Analysis output, shown in Table 26. 

Table 26: Multicollinearity Data Example Analysis 

 

Variables 𝒙1, 𝒙3, and 𝒙4 exceed the rule-of-thumb cutoff.64 Variable 𝒙2 warrants further review. 
Removing 𝒙1, 𝒙3, or 𝒙4 from the model may reduce the VIFs for the remaining predictors below the rule-

                                                      

64 The rule-of-thumb presented here is not the methodology used by CO$TAT to flag highly collinear variables. For 
more information, see the CO$TAT help file. 
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of-thumb thresholds. A best practice is to remove or change only one variable at a time and reexamine the 
VIF results. 

4.3.2.2 Visual Tests 
Visual assessment of multicollinearity is uncommon. Pairwise scatter plots can be created, known as a 
scatter plot matrix, plotting each predictor against each other predictor. Figure 69 displays an example of 
a scatter plot matrix. 

 
Figure 69: Scatter Plot Matrix 

4.3.2.3 Extension to Other Model Forms 
The discussion of multicollinearity focuses on the OLS model. However, these principles translate 
directly to more complex functional forms. The interpretations are nearly identical, with some 
mathematical subtleties in the background. For the purposes of this guide, it is sufficient to understand 
that while the metrics may be calculated differently, statistical software packages output the material in a 
very similar fashion.  
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Most statistical packages output correlation matrices and VIFs. Analyze these results using the same OLS 
framework. 

4.3.2.4 Addressing Multicollinearity 
When dealing with high multicollinearity, the first option is to eliminate one or more of the highly 
correlated variables. There are a number of ways to choose which variable to remove. The first option is 
to remove the variable(s) with the highest p-value, correlation coefficient, or VIF. Then, generate and 
validate a new CER. If multicollinearity is still present, either add the variable back into the model and 
remove a different variable(s), or simply remove an alternate variable(s), and repeat the fit and validation 
process. 

Second, centering and scaling the data as described in Section 3.3.6 Ridge Regression can help 
numerically stabilize the model. Attempt to refit the model using this transformation. 

If possible, combining collinear variables into a single variable is a sound way to deal with 
multicollinearity. Doing so maintains the set of relevant cost drivers from the original CER, and can 
possibly maintain the functional form derived from prior engineering knowledge. Unfortunately, this 
approach is usually only possible in the simplest of CERs. Section 3.3.6 Ridge Regression offers an 
alternative to the problem of multicollinearity. Another viable, related solution is the use of Principal 
Component Regression, introduced in Appendix A.4.9.2 as an advanced topic. 

If there are no significant multicollinearity impacts, the next step is assessing the significance of the 
model. 

 Model Significance 4.4
Many issues in CER development arise from choosing the “wrong” set of independent variables. Even 
when individual variables are reasonable choices, a certain combination of those variables may prove 
problematic. Enumerated below are four potential issues related to the choice of independent variables. 
The first three relate to individual variables, and the last one to the set of variables as a whole. 

(1) Omission of a relevant variable: This is the case where the equation excludes an important, 
relevant predictor. The cost driver exploration phase may have overlooked this variable 
altogether, or it simply may not have been included for this particular regression run. Omission of 
a “true” cost driver results in biased coefficient estimates for the remaining variables in the 
“incomplete” model. Coefficients that do not pass a “sanity check” (e.g., negative when expected 
to be positive, and vice versa) may be an indication of an omitted variable. Or, the model simply 
has a low R-squared value, indicating that a large portion of the variation in cost remains 
unexplained. If possible, the remedy is to include the variable or a reasonable proxy (e.g., system 
weight accounting for system complexity), and may require revisiting Step 1: Purpose, Scope, 
Collect, Validate, & Normalize and re-engaging with engineers to discuss what might be missing.  

(2) Misspecification of a variable: The previous case is the incorrect exclusion of a variable. 
Another case, the variable belongs, but its precise definition or expression is causing problems, 
resulting in biased and inconsistent coefficient estimates. As with many of these cases, 
unreasonable coefficient values can be a symptom, but the most common indication is an 
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insignificant variable (i.e., failed t-test) where it is expected to be significant. Specific instances 
and remedies are discussed below: 

a. Incorrect dimension: In shipbuilding, linear feet of cable may be a reasonable cost 
driver, but linear feet of pipe may be a problem because it fails to take into account 
significant differences in the diameter of various segments of pipe. Therefore, the 
customary cost driver is “square feet of pipe.”  

b. Improper use of proxy: Perhaps out of necessity (or expediency), a proxy variable is 
used and is not performing well in the regression. For example, the model may use an 
SME-based assessment of interface complexity, but it turns out to be better to collect 
actual interface counts from Software Resource Data Reports (SRDRs). 

c. Failure to use proxy: This is the converse of the previous case. A variable believed to be 
the true cost driver is not performing well in the regression, which leads the analyst to 
assess other variables that might be a reasonable proxy. This is why weight-based CERs 
are so common. 

(3) Inclusion of an irrelevant variable: This is the converse of case (1), above. An extra predictor 
that does not really “belong” is inappropriately included, resulting in inflated coefficient 
variances and artificially high 𝑅2 and F-statistic values. Like case (2), failing the t-test is the most 
common indication. Unreasonable coefficient values can also be a symptom. Because adding an 
extra variable always increases 𝑅2, adjusted 𝑅2 can be compared for the models with and without 
the variable in question. If adjusted 𝑅2 is higher without the variable and the variable is not 
statistically significant, then it should be excluded. 

(4) Strong multicollinearity amongst the independent variables: The case of significant 
correlation amongst the independent variables is not uncommon and creates problems when 
assessing model significance. This is the multicollinearity issue, discussed in Section 4.3.2. 

The focus is on independent variables, but the choice of dependent variable can also be problematic. It is 
not always as simple as taking 𝒚 = 𝐶𝐶𝑠𝐴. For example, volatilities in cost are often due to varying labor 
rates. In these cases, try 𝒚 = 𝐿𝑎𝑏𝐶𝐴 𝐻𝐶𝐴𝐴𝑠 instead and convert the result to dollars using contractor-
specific rates. As another example, consider a CER constructed using a quotient (e.g., dollars per pound) 
as the dependent variable. It generally works better to use the denominator of that quotient as an 
additional independent variable. If the assumption is cost relates to weight, use weight as an independent 
variable. Problems with trying to estimate the quotient include:  

• it entails an estimating step that may be confused as data normalization (e.g., dividing all the 𝑦-
variable costs by their respective weights) 

• it fails to capture the relationship between weight and any other independent variables (e.g., 
multicollinearity) 

• it locks the model into a linear relationship with the denominator variable when it may in reality 
be non-linear.  

While it may be appropriate to continue use of the quotient, do so only after considering the 
aforementioned issues. Also keep in mind the same parametric techniques used to develop CERs can be 
useful in a wide range of applications including estimating schedule, risk, and even technical parameters. 
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4.4.1 Statistical Significance of CER 
An analysis of variance (ANOVA) determines the overall significance of the model. Table 27 
demonstrates a sample ANOVA table produced by CO$TAT for the example problem introduced with 
OLS in Section 3.3.1.3. The ANOVA table contains three distinct rows: Regression (or Model), Residual 
(or Error), and Total (or Corrected Total). An ANOVA table has the following columns: Degrees of 
Freedom (DF), Sum of Squares (SS), Mean Squares (MS), F-statistic, and the F-statistic p-value. The 
example below also contains a column “Prob Not Zero”, which is simply 1 − P-value. 

Table 27: ANOVA Table – Section 3.3.1.3 Example 

 

As observed in Table 27, not every row has information in every column. There are no total MS, and 
only the Regression has an F-statistic. The values in the table have the following relationships: 

𝐷𝐹𝑡𝑒𝑡𝑟𝑜 = 𝐷𝐹𝑟𝑒𝑟𝑟𝑒𝑜𝑜𝑖𝑒𝑛 + 𝐷𝐹𝑟𝑒𝑜𝑖𝑟𝑟𝑟𝑜 
= 𝑙 − 1 

𝑆𝑆𝑡𝑒𝑡𝑟𝑜 = 𝑆𝑆𝑟𝑒𝑟𝑟𝑒𝑜𝑜𝑖𝑒𝑛 + 𝑆𝑆𝑟𝑒𝑜𝑖𝑟𝑟𝑟𝑜  

𝑀𝑆 =
𝑆𝑆
𝐷𝐹

 

𝐹 =
𝑀𝑆𝑟𝑒𝑟𝑟𝑒𝑜𝑜𝑖𝑒𝑛
𝑀𝑆𝑟𝑒𝑜𝑖𝑟𝑟𝑟𝑜

 

The remainder of this handbook uses the following notational conventions: 

𝑆𝑆𝑅 = 𝑆𝑆𝑟𝑒𝑟𝑟𝑒𝑜𝑜𝑖𝑒𝑛 = 𝑆𝑆𝑚𝑒𝑟𝑒𝑜  
𝑆𝑆𝐸 = 𝑆𝑆𝑟𝑒𝑜𝑖𝑟𝑟𝑟𝑜 = 𝑆𝑆𝑒𝑟𝑟𝑒𝑟  
𝑆𝑆𝑇 = 𝑆𝑆𝑡𝑒𝑡𝑟𝑜 

And similarly, 

𝑀𝑆𝑅 =
𝑆𝑆𝑅

𝐶𝐶𝑟𝑒𝑟𝑟𝑒𝑜𝑜𝑖𝑒𝑛
 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝐶𝐶𝑒𝑟𝑟𝑒𝑟
 

The F-statistic, and its corresponding p-value, is a measure of the overall model significance. Appendix 
A.3.2.1 Hypothesis Testing provides more information on hypothesis testing and significance levels. 

The F-statistic tests whether or not all of the independent variable coefficients are statistically different 
than zero. Predetermine a significance level, or 𝛼, ahead of time. If the p-value is less than 𝛼, the 
hypothesis that all the variable coefficients are equal to zero is rejected in favor of the alternative that they 
are not all zero, and the model as a whole is deemed significant. A traditional value to use is 𝛼 = 0.05. In 

Due To DF
Sum of Sqr 

(SS)
Mean SQ = 

SS/DF F-Stat P-Value Prob Not Zero
Regression 2 298146.5837 149073.2919 168.4858 0.0001 0.9999
Residual (Error) 4 3539.1306 884.7826
Total 6 301685.7143
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disciplines with small samples, a lower level may be justifiable. It is important to specify the level ahead 
of time and stay consistent to maintain a valid model. 

The F-test makes no statement on which variables are significant, only whether or not the overall model is 
significant. In this example, since p-value = 0.0001 < 𝛼 = 0.05, the conclusion is that there is sufficient 
evidence to suggest that all the coefficient estimates are not zero and that the overall model is significant. 

4.4.1.1 Extension to Other Model Forms 
The discussion of model significance focuses on the OLS model. However, these principles translate 
directly to more complex functional forms. The interpretations are nearly identical, with some 
mathematical subtleties. For the purposes of this guide, it is sufficient to understand that while the metrics 
may be calculated differently, statistical software packages output the material in a very similar fashion, 
regardless of method.  

Always test for statistical significance in the fit space, not in the unit space. Statistical packages output an 
ANOVA table for all functional forms solved using the method of least squares (not including the 
Generalized Linear Model (GLM)). For linear forms such as Generalized Least Squares (GLS), 
Transformable Linear and the Log-Linear Model, and Ridge Regression, the calculations are exact and 
based on formulas very similar to – or even transformed to be equal to – those of OLS. However, the 
concept of sums of squares is one that applies strictly to the linear model.  

Non-linear functions have deviances rather than the typical regression fit statistics. Further, the F-test is 
dependent on the normality assumption. Non-linear Least Squares (NLS) can produce results that are 
asymptotical and based on the convergence properties of normal theory (Appendix A.3.3.1.2 Small Data 
Sets – Asymptotic Results). While these asymptotic metrics are different from OLS, their analysis is 
identical but with less concrete interpretations. 

The Generalized Linear Model (GLM) typically does not output such a table. The results rely on 
likelihood ratios, which follow the Chi-squared distribution. Asymptotic results, similar to NLS, can also 
be produced by relying on Wald inference. Despite these differences, there is an overall model test, often 
called out in the output by the software package. Compare this p-value against a significance level in the 
same way as the OLS F-test. 

4.4.1.2 Addressing CER Significance 
If the model as a whole is statistically significant, the next step is to proceed to Section 4.4.2 Validate 
Variable Set. If the F-test is not rejected (p-value > 𝛼), then the overall model is not statistically 
significant. In this case, explore a new model form and/or consider a new set of predictors. The data may 
not support the hypothesized CER, as the predictors may not be cost drivers.  

4.4.2 Validate Variable Set 
The review of the results should also validate the individual variables used in the analysis. Table 28 
displays the standard output, in this case from CO$TAT, for the OLS example introduced in Section 
3.3.1.3  Multiple Linear Regression (MLR). This table always has a row for each parameter in the model: 
the independent variables and the intercept term. The table always contains the following columns: 
Coefficient, Std Dev of the Coef (Standard Error), t-statistic, t-statistic p-value. 
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The example below also contains the fields “Beta Value” and “Prob Not Zero.” The “Beta Value” is the 
scaled and centered value of the coefficient (as in Section 3.3.6 Ridge Regression). The “Prob Not Zero” 
is simply 1 − p-value. Not all statistical packages provide these two outputs and both can be ignored in 
this step. 

Table 28: Coefficients Table – Multiple Linear Regression Example 

 

The t-statistic is the coefficient estimate divided by its standard deviation and follows a Student’s t-
distribution, with 𝑙 − 𝐴 degrees of freedom. The t-statistics, and their corresponding p-values, measure 
the significance of the individual predictors in the model. Appendix A.3.2.1 Hypothesis Testing provides 
more information on hypothesis testing and significance levels. 

The t-statistic tests whether an individual independent variable coefficient is statistically different than 
zero. Predetermine a significance level, or 𝛼, ahead of time. If the p-value is less than 𝛼, the hypothesis 
that the coefficient is equal to zero is rejected in favor of the alternative that it is not zero. A p-value 
greater than 𝛼 suggests that the variable is not statistically significant and is a candidate for removal from 
the model. A traditional value to use is 𝛼 = 0.05. In disciplines with small samples, a lower level may be 
justifiable. It is important to specify the level ahead of time and stay consistent to maintain a valid model. 

Due to correlations that may cause unexpected results when removing more than one variable, only 
remove one variable at a time. Removal of one variable may cause another previously insignificant 
variable to now become significant. 

Each estimated coefficient should be statistically significant. If an insignificant variable is believed to be a 
“good variable”, consider the quality of the data sample or proceed back to Section 2.8 Hypothesize 
Functional Form to alter the way the variable affects the dependent variable in the equation form. In this 
example, the p-value for 𝐴𝐴𝐴𝐴 = .9202 > 𝛼 = 0.05 indicating the variable is not significant. The p-value 
for 𝑃𝐶𝑝𝐴𝐴 = 0.0039 < 𝛼 = 0.05 indicating 𝑃𝐶𝑝𝐴𝐴 is significant in the example model. These results 
also indicate 𝐴𝐴𝐴𝐴 is a candidate for removal from the model, while 𝑃𝐶𝑝𝐴𝐴 should be kept in the model. 

4.4.2.1 Intercept Term 
In general, the intercept term is not tested for significance. Its inclusion (or exclusion) from the model is 
governed by physical properties of the system and not from the statistics, highlighting the difference 
between a mathematical model and a statistical/econometric regression equation65. Mathematically, it is 
the CER result when all of the predictors are zero. While it is tempting to assign meaning to the intercept, 

                                                      

65 Rao, Potluri, and Roger LeRoy Miller. Applied Econometrics. Belmont, CA: Wadsworth Pub., 1971. Print. 

Variable Coefficient Std Dev of Coef Beta Value
T-Statistic 
(Coef/SD) P-Value Prob Not Zero

Intercept 37.3129 449.4459 0.0830 0.9378 0.0622
Power 28.2134 4.6985 0.9777 6.0047 0.0039 0.9961
Aper 6.1047 57.2542 0.0174 0.1066 0.9202 0.0798
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practically it is rarely interpretable. Additionally, negative intercepts are not of concern so long as the 
CER result is meaningful (generally the case when predicting away from the origin). 

There are cases where it may make sense to test the intercept for significance. A zero-intercept model 
with one independent variable is known as a Factor CER. Factor CERs are common in modeling below-
the-line WBS elements (e.g., training, testing or data as a factor of production costs). 

• With small sample sizes, every degree of freedom is vital. With only 3 or 4 observations, the 
simple linear regression model has only 1 or 2 degrees of freedom. Removing the intercept from 
the model conserves an additional degree of freedom. If the intercept is close to zero and 
statistically insignificant, it may be advantageous to remove the intercept from the CER. 

• When predicting values close to zero, the intercept gains more importance. When the data are far 
away from zero, a negative value is not of concern. The intercept is simply another degree of 
freedom helping “adjust” the model.  

• When predicting small values close to zero, a negative intercept may produce unacceptable 
results. In these cases, if the negative intercept is statistically insignificant, it may be advisable to 
remove it from the model. If the intercept is negative and highly significant, there may be other 
misspecifications in the model, such as missing predictors, inconsistent normalization, or poor 
quality of data. 

• When the intercept is negative, a reasonable sanity check is to test data over the range of interest, 
particularly on the side that results in smaller predicted values. For example, test values on the 
extreme low end of what may be used in the CER. If uncertain of these values, the minimum 
values for the sample dataset can serve as a good proxy. If these values result in negative or 
unrealistic outputs, then the negative intercept may need to be removed. 

In general, include the intercept in the model and test significance, unless there is logic for a zero 
intercept. If the regressed intercept is positive and just marginally significant, then leave it in the model. If 
the intercept is near zero in value and statistically insignificant, and the sample size is small, then it may 
be appropriate to delete the intercept from the model to conserve degrees of freedom.  

In some regressions, there may be a statistically significant negative intercept. If the data are far away 
from the origin, then it is okay to have a moderately negative intercept. However, if the data are very 
close to the origin and the predicted (negative) intercept is statistically very significant, then check the 
validity of the model to see if there are any misspecifications in the model form or any omitted 
explanatory driver variables. Additionally, the no-intercept equation might not necessarily go through the 
center of the dataset but will go through the origin.  

4.4.2.2 Extension to Other Model Forms 
The discussion of variable validation focused on the OLS model. However, these principles translate 
directly to more complex functional forms. The interpretations are nearly identical, with some 
mathematical subtleties. For the purposes of this guide, it is sufficient to understand that while the metrics 
may be calculated differently, statistical software packages output the material in a very similar fashion.  

Statistical packages output a table of coefficients for all functional forms. For linear forms such as 
Generalized Least Squares (GLS), Transformable Linear and the Log-Linear Model, and Ridge 
Regression, the calculations are exact and based on formulas very similar to – or even transformed to be 
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equal to – those of OLS. The Generalized Linear Model (GLM) uses likelihood ratio tests to produce tests 
analogous to the t-tests, but following the Chi-squared distribution. Non-linear Least Squares (NLS) 
produces asymptotic results based on the convergence properties of normal theory (Appendix A.3.3.1.2 
Small Data Sets – Asymptotic Results). Presentation of these metrics is in a nearly identical format as the 
coefficients table for OLS. While these asymptotic metrics are different than OLS, their analysis is 
identical but with less concrete interpretations. 

4.4.2.3 Addressing Driver Significance 
If all the variables are significant the next step is to proceed to Section 4.5 Model Quality. If the t-tests are 
not rejected (𝐴.𝑔. , p-value > 𝛼), then the respective variable is not statistically significant. In this case, 
explore a new model form and/or consider a new set of variables. 

 Model Quality 4.5
After validating the model assumptions, assessing high influence points and multicollinearity impacts, as 
well as confirming model and prediction coefficient significance, assess the model for fit and prediction 
quality. It is often instinct to choose the model that best fits the data. However, when constructing CERs, 
the real interest is usually prediction. A strong fitting model is great, but with poor prediction properties, 
that model is not optimal. The following sections examine several common metrics to assess both fit and 
prediction of the model. 

4.5.1 Assess Metrics of Fit 
This section describes the common metrics of fit, their use in assessing the OLS CER, and how they 
translate to other regression methodologies. A summary of some key SLR values and statistics for the 
Electronics data are provided in Table 29.  
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Table 29: Simple Linear Regression Formula Summary 

 

4.5.1.1 R-squared 
The coefficient of determination (𝑅2) is the most commonly used metric and represents the percent of 
total variation in the response variable explained by the model. The formula is, 

𝑅2 = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇

 

The 𝑅2 metric is bounded by 0 and 1. A value of zero suggests no correlation, or that taking the mean of 
the response is the optimal fit to the data. A value of one suggests a perfect linear fit to the data. 
Therefore, models with high 𝑅2 values are desired. However, there are many cautions to consider with 

Parameter Formula Result

Slope  27.3853

Intercept  92.9309

Standard Error  $42.2261
of the Estimate 

Standard Error $30.9235
 of the Intercept 

Standard Error $2.0480
of the Slope 

Power = 13.44
Standard Error $14.08

Confidence Interval (CI) Power = 26
$29.31

Power = 13.44
Standard Error $44.51

Prediction Interval (PI) Power = 26
$53.57

𝑆𝑒 =  
∑ 𝑦 − 𝑦�
𝑙 − 2

𝑆𝑏 =
𝑆𝑒

𝑆𝑥 𝑙 − 1
 

𝑆𝑦𝑐 = 𝑆𝑒
1
𝑙 +

𝑎 − �̅� 2

∑ 𝑎𝑖 − �̅� 2

𝑆𝑦 = 𝑆𝑒
1
𝑙 +

�̅� 2

∑ 𝑎𝑖 − �̅� 2

𝑆𝑦𝑝 = 𝑆𝑒 1 +
1
𝑙 +

𝑎 − �̅� 2

∑ 𝑎𝑖 − �̅� 2

�̂�1 =
∑ 𝑎𝑖 − �̅� 𝑦𝑖 − 𝑦�

∑ 𝑎𝑖 − �̅� 2  

�̂�0 = 𝑦�−  �̅��̂�1 
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this metric. 66 As more predictors are added to the model, 𝑅2 cannot get smaller; it can only get larger. As 
a result, when using multiple predictors in the model, use the adjusted 𝑅2 instead, 

𝑅𝑟𝑟𝑗2 = 1 −
𝑆𝑆𝐸

𝐷𝐹𝑒𝑟𝑟𝑒𝑟�
𝑆𝑆𝑇

𝐷𝐹𝑡𝑒𝑡𝑟𝑜�
 

This adjustment applies a penalty for adding variables to the equation. An additional predictor must be 
sufficiently valuable to outweigh this penalty in order for the 𝑅𝑟𝑟𝑗2  to go up. 

While high 𝑅𝑟𝑟𝑗2  values are desired, there is no clear cutoff for what constitutes an acceptable threshold. 

Different fields of study have different standards on how well a model should fit, and models with low 
Radj
2  values can still prove useful when no other alternative exists. Further, the Radj

2  value is highly 
dependent on scale and cannot be compared across models with different forms. As a result, Radj

2  is most 
useful for comparing models built on the same response, y, with different predictors, xi, in a linear 
setting. In this sense, the Radj

2  can be used as a selection criteria to determine which subset of predictors 
produces the best fitting model. 

Never use R2 or 𝑹𝒂𝒂𝒂𝟐  as the sole indicator of model quality or acceptability. 

4.5.1.2 Extension of R2 to Other Model Forms 
The 𝑅2 statistic is difficult to interpret when translated to other forms. As previously mentioned, it is 
highly dependent on scale. The definition of sums of squares is one unique to the linear model. They do 
not exist in the non-linear setting. The model has deviances instead, which are conceptually similar. In 
these settings, the 𝑅2 can be calculated in unit space as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1
∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

 

And, 

𝑅𝑟𝑟𝑗2 = 1 −

∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1

𝐷𝐹𝑒𝑟𝑟𝑒𝑟
�

∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

𝐷𝐹𝑡𝑒𝑡𝑟𝑜
�

 

The following are notes on 𝑅2 for the other regression methods focused on in this guide: 

                                                      

66 Kvalseth, Tarald O. "Cautionary Note about R2." The American Statistician 39.4 (1985): 279. 
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(1) Weighted Least Squares (WLS) 
The 𝑅2 produced for WLS by software is in the weighted space. As a result, it is often very high 
(i.e., closer to 1). This metric is not useful to assess how well the model fits. It is not comparable 
to OLS, and not even to other WLS models with different weighting schemes. To derive a useful 
metric, the 𝑅2 must be calculated in unit space. This metric can be used to compare between the 
OLS model and the WLS models. However, the OLS model will always have the highest unit 
space 𝑅2. Further, the WLS model with the highest 𝑅2 is not always optimal. Other metrics, such 
as the coefficient standard errors (Section 4.5.1.6 Coefficient Standard Errors) should be 
considered when choosing the optimal weights, 𝒘. 

(2) Transformable Linear and the Log-Linear Model 
The 𝑅2 produced by the Log-Linear model is in the log transformed space. As a result, it is a 
measure on how well the transformed data fits. This transformed model may not be the optimal 
fit, and may even result in a negative 𝑅2 in unit space. In these cases, the regression is a worse 
predictor than taking the average of the data, which has 𝑅2 = 0. Further, the unit space 𝑅2 is not 
comparable to the OLS 𝑅2. 

(3) Generalized Linear Model (GLM) and Non-linear Least Squares (NLS) 
The 𝑅2 is primarily a concept for linear regression and is not comparable back and forth between 
different functional forms. 

4.5.1.3 Root Mean Squared Error (RMSE) 
The RMSE is the estimate of the standard deviation of the error term, 𝜎, where 𝜎�2 = 𝑀𝑆𝐸 and 𝜎� =
𝑅𝑀𝑆𝐸. When examining RMSE, lower values are highly desired. RMSE is in the formula to calculate 
coefficient (𝑿�) standard errors, lower values can lead to higher chances of statistically significant 
predictors, as well as narrower confidence intervals. Another name for the RMSE is the Standard Error of 
the Estimate (SEE). 

Much like 𝑅2, it is important to distinguish between the fit space and unit space calculation of RMSE. 
Calculate the RMSE in unit space as follows: 

𝑅𝑀𝑆𝐸 = �
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1
𝐷𝐹𝑒𝑟𝑟𝑒𝑟

 

4.5.1.4 Standard Percent Error (SPE) 
The standard error of estimate for regression methods using a multiplicative error term has a different 
formulation than that derived for OLS. This formulation is referred to as the standard percent error (SPE), 
and can be derived using the following formulation: 

𝑆𝑃𝐸 =
�∑ �𝑦𝑖 − 𝑦𝚤�

𝑦𝚤�
�
2

𝑛
𝑖=1

𝐺𝐷𝐹
 

Where, 
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𝑦𝑖 is the actual observation in unit space 
𝑦𝚤�  is its predicted value for the ith data point (for i = 1,…,n) 
n is the total number of observations 
GDF = n – p for MUPE; GDF = n – p – 1 for regression methods that include a constraint, e.g., 
ZMPE (except for factor CERS) 
p is the total number of estimated parameters 

SPE is used to measure the multiplicative error for the model’s overall estimation of error. It is used to 
define the uncertainty of CER results for methods such as MUPE and ZMPE. 

4.5.1.5 Extension of RMSE to Other Model Forms 
Root Mean Squared Error is applicable to all of the functional forms. Its calculation is the same for linear 
and non-linear functional forms fit by least squares methodologies. One difference between 
methodologies is that the GLM model uses maximum likelihood to estimate model parameters. MLE 
estimates the dispersion parameter (e.g., 𝜎�2 for normal error) for the model rather than using the least 
squares MSE calculation. RMSE can be used to compare models of different forms (such as Ordinary 
Least Squares (OLS), Transformable Linear and the Log-Linear Model, and Non-linear Least Squares 
(NLS)), but this should be done using the same set of independent variables each time. 

4.5.1.6 Coefficient Standard Errors 
Table 28: Coefficients Table – Multiple Linear Regression Example contains the coefficient standard 
errors. Under the normality and linearity assumptions, not only is the response, 𝒚, normally distributed, 
but the parameter coefficients, 𝛽𝑗, are as well.  

Therefore, the smaller the coefficient standard errors, the smaller the error term of the normal distribution 
surrounding each coefficient. This is an important concept because confidence and prediction intervals 
(discussed under Step 5: Characterize Uncertainty) are a function of the covariance matrix. The (𝑘 + 1) ×
(𝑘 + 1) covariance matrix for 𝑿� is, 

𝑉𝑎𝐴�𝑿�� = 𝜎�2(𝑿′𝑿)−1 
= 𝑅𝑀𝑆𝐸 ∙ (𝑿′𝑿)−1 

The variance, or the coefficient standard error, surrounding each �̂�𝑗 is the 𝑗𝑡ℎ diagonal of 𝑉𝑎𝐴�𝑿��. The 
smaller the RMSE, the more desirable the model. The equation above shows how the variance of the 
coefficients is a multiple of the RMSE. The second half of the equation displays the (𝑿′𝑿)−1 matrix. The 
correlation matrix is defined as 𝑿∗′𝑿∗, where 𝑿∗ is the 𝑿 matrix scaled to have variance of one and is 

unitized. The inverse of this matrix, �𝑿∗′𝑿∗�−1, is how the VIFs were calculated. The (𝑿′𝑿)−1 matrix is 
similar, but in the scale of the raw data rather than unitized. Large VIFs result in large diagonals that are 
in (𝑿′𝑿)−1 relation to the size of the coefficient estimate. 

4.5.1.7 Extension of Coefficient SE to Other Model Forms 
Models with small coefficient standard errors are preferred. Comparison across model forms is possible, 
but may not be the best metric to use when trying to decide between multiple functional forms, such as 
linear versus non-linear. Examining the standard errors is very useful when employing Weighted Least 
Squares (WLS). In this setting, the selected set of weights should be the one, which has minimum error 
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around the coefficient estimates. Provided the 𝑅2 and RMSE are not significantly worse than the other 
weighting options, this can be a good selection strategy for deciding between sets of weights. 

4.5.1.8 Predicted versus Actuals Plot 
Figure 70 shows the actual observed costs and the predicted costs for the Section 3.3.1.3 OLS Example. 
It is the visual display of the dependent variable actual observations versus the dependent variable 
estimated values. A perfect CER has all observations on the 45-degree line through the origin (𝑦 = 𝑎, or 
Predicted = Actual).  

 
Figure 70: Predicted versus Actual Plot 

Figure 70 illustrates a strong regression fit as indicated by the proximity of the observed points to the 
predicted line, highlighted in blue. This plot also enables a visual check for the regression model’s 
accuracy when compared to the actual response variable values. This graph provides an optimal 
visualization technique for the results of the regression, which is particularly important in the case of two 
or more independent variables, where the regression itself may be difficult to visualize. 

4.5.1.9 Bayesian and Akaike Information Criterion 
Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) are two likelihood-based 
metrics. These metrics are available from most statistical packages and are relative metrics. AIC and BIC 
by themselves provide no information on how well the model fits. However, they can be used as a 
comparison between different model forms and aid in the selection of a functional form, provided that the 
dependent variable, 𝒚, has the same numerical value for each model (e.g., not comparing 𝒚 to log𝒚). 
These metrics are not OLS specific and provide a good way to compare different CER forms. In terms of 
model selection, lower AIC and BIC values are preferred. 

AIC is often used due to its practical, probabilistic interpretation. The relative probability of 𝑆𝐶𝐶𝐴𝑙𝑖 
minimizing the loss is, 

𝐴
min𝐴𝐴𝐴−𝐴𝐴𝐴𝑖

2  
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For example, suppose there are three models with the following AIC values: 51, 53, and 59. Table 30 can 
be produced using the above formula: 

Table 30: AIC Relative Probability Example 

Model AIC Relative Probability 

1 51 𝐴
51−51
2 = 1.0000 

2 53 𝐴
51−53
2 = 0.3679 

3 59 𝐴
51−59
2 = 0.0183 

In this example, Model 2 has a 36.79% probability of being “optimal” relative to Model 1, and Model 3 
has only a 1.83% probability. 

The Joint Cost and Schedule Risk and Uncertainty Handbook (CSRUH) contains more information on 
AIC and BIC. 

4.5.1.10 Extension of BIC and AIC to Other Model Forms 
Both BIC and AIC are applicable to all functional forms. Use them to compare models of different forms 
(such as Ordinary Least Squares (OLS), Transformable Linear and the Log-Linear Model, and Non-linear 
Least Squares (NLS)). 

4.5.1.11  Mallows’ Cp 

The Mallows’ 𝐶𝑝 statistic is an estimate of the mean squared prediction error for the OLS model. The 
metric accounts for both variance and bias within the estimator, and adjusts for the impact of adding more 
than necessary predictors to the model. Much like AIC and BIC, Mallows’ 𝐶𝑝 is not used on its own but 
can be very useful when comparing multiple models to each other.  

In linear regression with a normally distributed error term, Mallows’ 𝐶𝑝 is equivalent to AIC. The formula 
for Mallows’ 𝐶𝑝 is, 

𝐶𝑝 =
𝑆𝑆𝐸
𝑀𝑆𝐸

− 𝑙 + 2𝐴 

Similar to Root Mean Squared Error (RMSE), models with smaller values of 𝐶𝑝 are preferred. 

4.5.1.12 Extension of Mallows’ Cp to Other Model Forms 
Mallows’ 𝐶𝑝 is only used for assessing linear regression models (discussed in further detail under Section 
3.3.1 Ordinary Least Squares (OLS), Section 3.3.2.2 Weighted Least Squares (WLS)). For other model 
forms such as Non-linear Least Squares (NLS), use alternative but similar metrics, such as AIC. 

4.5.2 Assess Metrics of Prediction 
A popular method to assess the prediction ability of a model is Cross Validation and the PRESS statistic. 
The following sections discuss these concepts and their use in assessing prediction ability of a CER in the 
context of OLS, and then how that translates to other regression methodologies. 
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Cross validation is a methodology in which a subset of the observations is held out in a “test” dataset, 
while the model is fit using the remaining “training” dataset. Cross validation can serve multiple 
purposes. A primary objective is to prevent model over-fitting. Additionally, it can be useful in 
identifying highly influential points on the model.  

4.5.2.1 Cross Validation (k-Fold) 
One way to conduct cross validation is called 𝑘-fold cross validation. The variable 𝑘 refers to the number 
of subsets formed from partitioning the data set. For example, 10-fold cross validation splits the data into 
10 roughly equal subsets. First, fit the model using nine of these subsets. Then, test the model using the 
remaining subset and record a measure of prediction or accuracy, usually Mean Squared Error. Repeat 
this process, predicting each of the 10 subsets based on the remaining nine. Two popular selections for 𝑘 
are 5 and 10, since they represent 80/20 and 90/10 splits on the data, respectively. 

This process creates 10 different MSE statistics, all which should be similar to each other. If not, that is an 
indication that one of the subsets performed different when predicting the response. 

4.5.2.2 Cross Validation (Leave-One-Out) 
A more extreme example of cross validation is leave-one-out. In this scenario, use all but one data point 
to fit the model, and calculate model metrics for the single “left out” point. Repeat this process for all 
observations in the model. This methodology is discussed in Section 4.3.1.4 Leave-One-Out Metrics. In 
general, a good way to use this information is to examine which data observations have leave-one-out 
results greatly different from the rest. This can signal observations that significantly impact the model’s 
performance and may help identify potential leverage points and outliers. 

Cross Validation is convenient due to its applicability to all of the functional forms. Its calculation is the 
same for linear and non-linear functional forms. Use the resulting metric from Cross Validation to 
compare models of different forms (such as Ordinary Least Squares (OLS), Transformable Linear and the 
Log-Linear Model, and Non-linear Least Squares (NLS)), and across different subsets of predictors. 

4.5.2.3 Predicted Residual Sum of Squares (PRESS) 
The PRESS statistic is an aggregated metric from Leave-One-Out cross validation. The sum of the 
squared errors for each predicted point is the Predicted Residual Sum of Squares (PRESS). PRESS is a 
popular statistic used to assess prediction ability of the model. Its interpretation is the same as SSE, but 
provides a better view on how well the model predicts. A further convenience is that PRESS can be 
calculated with a relatively simple formula. There is no need to run all the 𝑙 regressions, making it 
convenient from a computational standpoint. Many statistical packages including SAS JMP, Minitab, and 
R return the PRESS statistic. Smaller values indicate a lower prediction error and are desirable. 

A simple way to calculate PRESS for OLS is to first calculate the PRESS residual, e_(i,PRESS) for each 
observation. 

𝐴𝑖,𝑃𝑅𝑃𝑂𝑂 =
𝑦𝑖 − 𝑦�𝑖
1 − ℎ𝑖𝑖

 

The value ℎ𝑖𝑖is the leverage value of observation i, or the ith diagonal entry of the predicted matrix, H. 
Note the similarities with the internally and externally studentized residuals. 
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Once calculated, PRESS is simply the sum of squares of the individual PRESS residuals. 

𝑃𝑅𝐸𝑆𝑆 = �𝐴𝑖,𝑃𝑅𝑃𝑂𝑂2
𝑛

𝑖=1

 

The Outlier Analysis Table from CO$TAT in Table 23 again provides the necessary information to 
calculate PRESS for the example problem introduced with OLS in Section 3.3.1.2. In order to calculate 
the PRESS residual, the following terms are required: 

𝑦𝑖 = 𝐶𝐶𝑠𝐴 
𝑦�𝑖 = 𝑃𝐴𝐴𝐶𝐶𝐶𝐴𝐴𝐶 𝑌 𝑉𝑎𝑙𝐴𝐴 
ℎ𝑖𝑖 = 𝐿𝐴𝐼𝐴𝐴𝑎𝑔𝐴 

For example, the first observation can be derived using the following statement: 

𝐴1,𝑃𝑅𝑃𝑂𝑂 =
390 − 372.5577

1 − 0.2093
 

= 22.0593 

While the CO$TAT result shows all 9 observations from the original dataset, keep in mind that 
Observations 4 and 9 are not actually used in this CER since they have no data for Aperture (see data in 
Table 6). In this example, n = 7 due to two observations that are excluded. After carrying out this 
calculation for each observation, the resulting value is67: 

𝑃𝑅𝐸𝑆𝑆 = �𝐴𝑖,𝑃𝑅𝑃𝑂𝑂2
7

𝑖=1

 

= 22.05932 + ⋯+ (−3.8383)2 
= 12,439.1171 

 

PRESS is convenient due to its applicability to all of the functional forms. Its calculation is the same for 
linear and non-linear functional forms. Use PRESS to compare models of different forms (such as 
Ordinary Least Squares (OLS), Transformable Linear and the Log-Linear Model, and Non-linear Least 
Squares (NLS), and across different subsets of predictors. 

4.5.2.4 Predicted R2 
PRESS is an absolute measure. Using this measure alone, analysts do not really know how robust the 
regression model is. The Predicted R2 statistic is defined to be the fraction of the variation in the 
dependent variable explained by the “leave-one-out” model, which puts PRESS in perspective:  

                                                      

67 Allen, David M. “The Relationship between Variable Selection and Data Augmentation and a Method for 
Prediction.” Technometrics, vol. 16, no. 1, 1974, pp. 125–127. www.jstor.org/stable/1267500 
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Predicted 𝑅2  =  1 –  PRESS/SST 

SST is the total sum of squares about the dependent variable. The Predicted R^2 values cannot be 
compared across model forms because SST is different for the OLS and LOLS model. 

The Predicted R2 statistic is commonly used to determine how well the model predicts for new 
observations, but it would be unusual for it to give a different answer than PRESS. If Predicted R2 is 
substantially lower than 𝑅𝑟𝑟𝑗2  that is an indication that the model is inflated by over-fitting. Predicted R2 
can be more useful than 𝑅𝑟𝑟𝑗2  in measuring the predictive power of the model because it is calculated 
using observations not included in the model. PRESS and/or Predicted R2 are recommended calculations 
for assessing any regression equation. 

 Model Selection 4.6
The preceding sections of Step 4: Validate CER introduce the basic toolset for validating and assessing a 
regression model. After the iterative process of checking assumptions, running model diagnostics, 
checking statistical significance, and assessing model quality, a statistically sound CER is hopefully 
achieved. However, it is possible that multiple CERs appear valid and the question becomes: which one 
should be used? This leads to the topic of Model Selection, which is further broken out into the following 
two questions:  

(1) Within a singular functional form, what variable set should be included in the model? 
(2) Given two or more valid models of different functional form, which one is better? 

The remaining parts of this section study both of these cases using the previously introduced tools and 
concepts. Section 4.6.1 Variable Selection addresses question (1) and Section 4.6.2 Functional Form 
Selection addresses question (2). 

Keep in mind that the statistics and numerical metrics are there to guide the model selection. Make sure to 
compare each potential model with the original hypothesis as developed in Section 1.3.4. In an ideal 
world, the data and statistical methods will support the hypothesized CER. When this is the case, the 
process of model selection is easy. When this is not the case, it is important to consider and try to 
understand why the hypothesis and statistical results are in conflict. It could be that the data are simply 
poor and not an accurate representation of reality. 

The solution may be a subtle change in the formulation or addressing a mathematical nuance. Perhaps 
multicollinearity is creating noise or maybe the selected regression method is not the best way to fit the 
hypothesized CER. Another possibility is that the data are now providing new insights that may cause an 
update to the original hypothesis. Be sure to consider all the information gathered along the way towards 
constructing each CER and make sure that candidate CERs are not simply arbitrary mathematical models 
with seemingly “good” statistics. 

While many statistical tools are available to inform the model decision making process, the selected 
model must be logical, comprehendible, and justifiable. When considering multiple models with similar 
fit statistics, the model with the most logical and simplistic form is preferred. 
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4.6.1 Variable Selection 
Variable selection within a model is a heavily studied area of statistics. Suppose a given regression 
methodology and model functional form are to be used to model a response 𝒚 based on 𝑘 potential 
predictors, 𝒙1, … ,𝒙𝑘. What subset of these predictors produces the “optimal” model? While the term 
optimal is subjective, there are standard metrics and practices to help reach an agreeable, defensible 
solution. This section introduces several common approaches to variable selection when creating a CER. 

There are many factors to consider when determining if a predictor belongs in the model or not. The 
predictor must make sense when considering the physics of the chosen variables. Correlation does not 
imply causation, it takes thought and understanding beyond what the statistics can provide to draw this 
line. 1.3 Cost Estimate Purpose and Scope discusses this concept in more detail. 

Correlation does not imply causation. 

It is also important that the subset of independent variables create a model, which satisfies all assumptions 
and is statistically valid. This means that the model satisfies the criteria put forth in Sections 4.2 Model 
Assumptions, 4.3 Model Diagnostics, and 4.4 Model Significance. Note that the results from Section 4.4 
Model Significance are binary: statistically significant, or not statistically significant.  

The statistical tests, such as the overall model F-test (Section 4.4.1), only suggest if the model is 
statistically significant at the predetermined significance (𝛼) level. Do not compare p-values across 
models. Comparing p-values between models and concluding that one model is more statistically 
significant than the other is an incorrect and a false interpretation. Additionally, adjusting the 𝛼 level after 
the fact is not an acceptable practice and invalidates the analysis. 

Finally, the subset of independent variables should create a model that performs well for both metrics of 
fit and prediction, as covered in Section 4.5 Model Quality. It is not wise to select one criteria, such as 
𝑅𝑟𝑟𝑗2 , and blindly choose the variable subset with the highest/lowest value. Be sure to examine multiple 
criteria and select a model that performs highly across all relevant criteria. 

4.6.1.1 Common Selection Strategies 
There are several traditional, iterative approaches utilized to search for a model with some optimal 
criteria. The simplest method adds and/or removes independent variables based on significance tests 
(Section 4.4.2 Validate Variable Set). 

Forward selection begins with no variables in the model. At each step, the variable with the lowest 
(closest to zero) statistically significant p-value is entered into the model. The process continues until 
there are no more significant predictors to add. 

Backward selection begins with all variables in the model. At each step, the variable with the highest 
(closest to one) statistically insignificant p-value is removed from the model. The process continues until 
all predictors in the model are significant. 

While not common in cost analysis, backwards selection is a reasonable starting approach when there 
are many potential independent variables. It can be used to reduce many (e.g., 30 or more) predictors 

down to a more reasonable amount (e.g., 10). 
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Stepwise selection68 begins as either forward selection or backwards selection (though starting from 
backwards is more common). With stepwise selection, the model can either add or remove a variable at 
each step. The process continues until all predictors in the model are significant and all predictors not in 
the model are insignificant. Stepwise selection is usually the default between the choice of forward, 
backward, and stepwise. The following two paragraphs describe how this selection process works.  

– Terminology – 

In regression analysis there is an unknown, true theoretical regression equation made up of both an 
actual underlying relationship and random noise. This is shown by the generic form 𝑦 = 𝐶(𝑋;𝛽) + 𝜀.  

Over-fitting is when the model is describing noise (𝜀) and occurs when the model is more complex than 
necessary (e.g., has too many predictors).  

For forward, backward, and stepwise selection, a p-value is selected at a predetermined significance (𝛼) 
level as a criteria for which a variable will enter/exit the model. This p-value is usually set higher than the 
traditional 𝛼 = 0.05, usually around 𝛼 = 0.10 or 𝛼 = 0.15 to enter the model, and as high as 𝛼 = 0.20 to 
exit the model. 

In addition to using the F-statistic as the entry/exit criteria, all of the above methodologies can be 
modified to add/remove variables based on other fit/prediction criteria (Section 4.5 Model Quality). A 
popular, and more technically sound, approach to forward, backward, and stepwise selection is to use 
Mallows’ 𝐶𝑝 as the entry/exit criteria into the model which helps hedge against overfitting concerns.  

All-subsets selection is the “brute force” approach of examining all possible subsets of the model. 
Construct a model for each possible combination of variables and sort them by some selection criteria. 
While computationally intensive, modern algorithms and improved computing speed now provide a more 
practical approach for as many as 𝐴 = 30 independent variables. Use this method to create a short list of 
candidate models for more rigorous manual examination. 

Do not use 𝑅2 or 𝑅𝐴𝑟𝑗2  as the selection criteria under an all-subsets approach. Doing so will almost 
certainly result in overfitting (i.e., selecting a CER with too many independent variables). Be sure to 
consider multiple metrics simultaneously.  

Although popular, none of the aforementioned selection methodologies are without their flaws. Recalling 
Section 3.3.1 Ordinary Least Squares (OLS), the OLS model produces the Best Linear Unbiased 
Estimator (BLUE). However, this does not account for the selection procedure. Running many models in 
a forward, backward, or stepwise selection procedure introduces bias and inflates the variance of the 
result. The resulting statistics from the selected model, including t-statistics and coefficient standard 
errors, are invalid since they do not account for the selection procedure. The test distributions no longer 
                                                      

68 CO$TAT includes an “analyst in the loop” feature called Stepwise Analysis that helps identify the next step to 
improving a cost estimating relationship. This is not the same as Stepwise Regression. More details on this feature is 
found in the CO$TAT help file. 
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hold, and the errors are understated. Additionally, there is no guarantee that the procedure will find the 
model with the “optimal” metric of interest (e.g., the highest 𝑅2). 

The all-subsets approach should generally be preferred over stepwise regression. The results provide more 
details and the ability to choose the “best” model based upon multiple sources of information on a set of 
candidate models, including subject matter expert knowledge of the variable set. For example, suppose 
the all-subsets approach is used and two models, Model A and Model B, rank very favorably across 
𝑅𝑟𝑟𝑗2 , Root Mean Squared Error (RMSE), AIC, BIC, PRESS, and 𝐶𝑝.  

4.6.1.2 Conclusion 
While the processes, tools, and methodologies discussed in Section 4.0 are powerful, it is important for 
analysts to understand the mathematical relationships and outputs specific to a given a model. Table 31 
summarizes the metrics introduced in Section 4.5 Model Quality and their use in variable selection. A 
detailed analytical comparison of variable subsets examines 𝑅𝑟𝑟𝑗2 , RMSE (or MSE), PRESS, AIC (or 
BIC), and 𝐶𝑝.  

Every analysis does not need to use every metric, but using multiple metrics and selecting a logical 
model, which performs favorably across all of them, is a sound strategy for performing variable selection. 
Note that at this stage all candidate models have passed the statistical significance requirements for both 
the F and t statistics (Section 4.4 Model Significance). Do not use these statistics to compare between 
models. 

Table 31: Variable Selection Metrics 

Section Metric Variable Selection Application Excel and 
CO$TAT69 

4.5.1.1 𝑅2 and 𝑅𝑟𝑟𝑗2  As variables are added to the model, 𝑅2 always increases. Do 
not use 𝑅2 for variable selection. The 𝑅𝑟𝑟𝑗2  statistic adjusts for 
the number of predictors in the model and can decrease if an 
insignificant predictor is added. 
The 𝑅𝑟𝑟𝑗2  statistic can be useful for comparing between 
different variable sets within a functional form, but should not 
be used as the sole metric. Higher values for 𝑅𝑟𝑟𝑗2  suggest a 
better model fit. 
 
 
 

Yes 

4.5.1.3 Root Mean 
Squared Error 
(RMSE) 

RMSE (or just MSE) is an estimate of the model standard 
deviation (or variance). It can be used to compare between 
different variable sets within a functional form, with lower 

Yes 

                                                      

69 Indicates if the metric is readily accessible from Excel and CO$TAT 7.4. Minitab, SAS, SAS JMP, STATA, and 
R support all these metrics. 
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values suggesting a better model. The RMSE should not be 
used as the sole selection metric. 

4.5.1.6 Coefficient 
Standard 
Errors 

Coefficient standard errors can be difficult to compare across 
multiple variable sets. There are multiple values to consider, so 
while they can be valuable, they are not traditionally used in 
model selection. Lower standard error values suggest less 
variation around the estimates and are preferred. 

Yes 

4.5.1.8 Predicted 
versus Actuals 
Plot 

Predicted versus Actuals Plots are useful to assess a single 
model, but are not an ideal tool for comparing across models 
with multiple variable sets. They provide no insight to the 
inclusion of insignificant variables and are not traditionally 
used in the variable selection process. 

Yes 

4.5.1.9 BIC and AIC BIC and AIC are likelihood-based metrics for quality of the 
model. Both are used to compare between different variable sets 
within a functional form, with lower values suggesting a better 
model. 
AIC is one of the more popular metrics to use when selecting a 
model. While it is best to compare multiple metrics to select the 
optimal model, if a sole metric were to be used, it most 
commonly would be AIC. 

No 

4.5.1.11 Mallows’ 𝐶𝑝 Mallows’ 𝐶𝑝 is a traditional statistic for comparing between 
different variable sets within a linear model. Lower values 
suggest a better model. 

No70 

4.5.2.1 Cross 
Validation and 
PRESS 

Cross Validation statistics and the PRESS statistic are 
comparable across different variable sets within a functional 
form. It is common to use results from the Cross Validation to 
compare models. 
It is most common to report the PRESS statistic to compare 
between variable subsets. Like RMSE, lower PRESS values 
suggest a better model. 

No 

A common strategy to compare models is to create a table of candidate models, such as Table 32. To 
create the table, first run the all-subsets regression. Sort the results on each of the metrics of interest, in 
this case 𝑅𝑟𝑟𝑗2 , RMSE, AIC, 𝐶𝑝, and PRESS. Select the top ten performing models for each for further 
comparison. There will be much overlap of candidate models, so select models that rank in the top ten for 
all of the metrics as the final candidates. This will usually result in around five to eight models, but it 
varies depending on the problem. Finally, compare the short list of models. By examining the metrics, a 
few models typically stand out from the rest as being more statistically favorable. From there, apply 
subject matter expertise to make the final selection. Models with fewer predictors or containing predictors 
deemed more important by logic should be heavily favored. 

                                                      

70 Mallows’ 𝐶𝑝 is not readily provided by Excel nor CO$TAT, but can easily be calculated using the formula 
provided in Section 4.5.1.11. 
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Table 32 displays an arbitrary table for the sole purpose of illustrating the concept. From the statistics, it 
is clear that models 1, 2, and 3 perform better across all metrics compared to models 4 and 5. Models 1 
and 2 are simpler than model 3, which is preferred (i.e., Models 1 and 2 include one less variable).  

There will always be judgment involved in model selection, but the creation of a short list of candidate 
models can greatly assist in the process of selecting a variable set. 

Table 32: Variable Selection Table 

Model Predictors 𝑹𝒂𝒂𝒂𝟐  (rank) RMSE 
(rank) AIC (rank) 𝑪𝒑 (rank) PRESS 

(rank) 
1 x1 x2 x4 x6 x7 0.8264 (1) 29.3 (2) 103.9 (2) 5.26 (2) 6648 (3) 
2 x1 x2 x5 x7 x8 0.8205 (2) 29.7 (3) 103.2 (1) 4.35 (1) 6596 (2) 
3 x1 x2 x4 x6 x7 x8 0.8186 (3) 28.4 (1) 106.3 (3) 6.92 (3) 6528 (1) 
4 x1 x3 x4 x5 x6 0.8172 (4) 32.6 (5) 110.9 (4) 7.04 (4) 6692 (4) 
5 x1 x2 x4 x5 0.8103 (5) 30.1 (4) 112.6 (5) 7.89 (5) 6795 (5) 
4.6.2 Functional Form Selection 
Selecting between multiple valid models of different functional forms can be a difficult task. It is not 
common to have multiple forms all satisfying their respective sets of assumptions. However, the problem 
does arise and it is often very difficult to select which form is the “correct” one. In the context of 
functional form selection, a valid model is one, which satisfies requirements set forth in Section 4.2 
Model Assumptions and in Section 4.4 Model Significance. Conclusions drawn in Section 4.3 Model 
Diagnostics result in actions affecting all candidate models, such as removing a point or removing a 
collinear variable. Again, it is worth noting that the Section 4.4 Model Significance cannot be compared 
between models. 

While advanced modern selection algorithms exist, there are no traditional automatic model selection 
methodologies used to choose between candidate models. The following are several rules-of-thumb to 
follow when deciding between multiple functional forms. 

(1) Does the functional form make sense? With computer regression software, it is easy to develop 
a model with many variables in complex relationships that fits the data very well. Such a model 
may predict future observations poorly due to overfitting, loss of degrees of freedom, etc.  

(2) How well do the assumptions fit? As covered in Section 6.2, validation of model assumptions 
can be subjective. There can be different degrees of how well the assumptions fit. For example, a 
linear model may have a residual plot that is not ideal, but not enough to completely reject the 
linearity assumption (Section 4.2.1.5 Linearity). However, the residual plot may look much better 
and fully satisfy the assumption when using a non-linear form. This may be reason enough to 
prefer the non-linear form, since this form generates improved fit statistics than compared to the 
linear form. 

(3) How do the models compare across the relevant metrics? Not all of the metrics presented in 
Section 4.5 Model Quality are valid for comparison across functional forms. However, there are 
some statistics that can be used for comparison purposes (e.g., RMSE, SSE, etc.). 

Table 33 summarizes the metrics introduced in Section 4.5 Model Quality and their use in functional 
form selection. An analytical comparison of functional forms examines far fewer metrics than comparing 
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different variable subsets. Every analysis does not need to use every metric, but using multiple metrics 
and selecting a logical model, is a sound strategy for performing variable selection. 

It is possible and there are cases where there is simply no model that provides a reasonable result. When 
the possibilities have been exhausted, there are times when a simple average (i.e., the analogy approach) 
may be the best choice moving forward (Section 2.3.4). 

Table 33: Functional Form Selection Metrics 

Section Metric Functional Form Selection Application Excel and 
CO$TAT67 

4.5.1.1 𝑅2 and 𝑅𝑟𝑟𝑗2  Neither 𝑅2 nor 𝑅𝑟𝑟𝑗2  should be used to compare between models 
of different functional forms. 

Yes 

4.5.1.3 Root Mean 
Squared 
Error 
(RMSE) 

RMSE (or just MSE) is an estimate of the model variance. It can 
be used to compare between functional forms, however each form 
must contain the same variable set. Additionally, the unit space 
metric should be used. Lower values suggest a better model, and 
the RMSE should not be used as the sole selection metric. 

Yes 

4.5.1.6 Coefficient 
Standard 
Errors 

Coefficient standard errors can be difficult to compare across 
many models. Since there are usually several valid functional 
forms to choose from, comparison of standard errors is often 
more practical for functional form selection as opposed to 
variable selection. Lower standard error values suggest less 
variation around the estimates and are preferred. 

Yes 

4.5.1.8 Predicted 
versus 
Actuals Plot 

Predicted versus Actuals Plots are useful to visualize the fit of a 
model. If one functional form predicts the in-sample data more 
accurately than another form, that may indicate the more 
appropriate model.  

Yes 

4.5.1.9 BIC and AIC BIC and AIC are likelihood based metrics accounting for fit of 
the model. They are both used to compare different functional 
forms, with lower values suggesting a better model. However, all 
models should use the same dependent variable (e.g., one model 
cannot use 𝒚 while another uses log𝒚) 
AIC is one of the more popular metrics to use when selecting a 
model. While it is best to compare multiple metrics to select the 
optimal model, if a sole metric were to be used, it would most 
commonly be AIC. 

No 

4.5.1.11 Mallows’ 𝐶𝑝 Mallows’ 𝐶𝑝 is a traditional statistic for comparing between 
variable sets within a linear model. Since it only applies to the 
linear model, it is not applicable for comparing between 
functional forms 

No 

4.5.2.1 Cross 
Validation 
and PRESS 

Cross Validation statistics and the PRESS statistic are comparable 
across different functional forms. It is common to use results from 
the Cross Validation to compare models. 
The use of k-fold Cross Validation is a common way to compare 
across functional forms, especially with complex models. 

No 

In summary, RMSE, Predicted versus Actuals plots, AIC (or BIC), Coefficient Standard Errors, and Cross 
Validation (including PRESS) can be used as statistical metrics to select between multiple model forms. 
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Create a table, much like Table 32, to facilitate the comparisons. However, statistical comparisons are 
only valid if (1) the model makes sense and (2) the assumptions are satisfied. 

 CER Responsiveness 4.7
Part of the identification of cost drivers is understanding the variable sets believed to be important to the 
equation (Section 2.7:Identify Potential Variable Sets). A perfect data set is almost never possible. More 
often than not, analogies are not perfect, and the data are more dissimilar than they are similar from a 
system-level perspective. For example, when trying to evaluate the cost for a propulsion system, the same 
engine type may be in a variety of different systems or platforms with very little in common other than 
propulsion requirements. Treating the data to make it more similar by using categorical variables, or 
excluding observations in particular relationships is often necessary. That does not mean the data are bad, 
they just may only be relevant to a small subset of the CERs developed to populate a WBS for a given 
system.  

Therefore, the analysis must be qualified. Clearly articulate the range or system properties associated with 
the analysis to qualify its limitations. Assessing and documenting a CER’s responsiveness over a 
particular scope of variable parameters will allow an understanding of the CER’s limitations and 
strengths. 

Sensitivity Analysis, like most of the previous discussion, is an iterative process conducted while 
evaluating the CER. To conduct a sensitivity sanity check, evaluate the set of independent variables and 
determine a reasonable range over which they should vary. At a minimum, evaluate the model over the 
range of data for which the CER is based, but it can be desirable to extrapolate beyond the range of the 
data. If the estimated parameter value for the new system being estimated falls outside the historical 
range, the evaluated sensitivity range must account for adequate uncertainty. 

Once these ranges are determined, vary each independent variable across its range, holding the other 
variables constant at their planned values. Depict the resulting variation in cost in a tornado chart. 

Consider referring back to Section 2.4 Univariate Data Analysis to see the influence of a single variable 
and its impact on the CER. 

CER inputs are rarely are precise. For example, weights are usually engineering estimates and SLOC 
counts are usually assessments from software engineers. The total uncertainty in the estimate includes not 
only the statistical uncertainty in the CER itself, but the uncertainty in the independent variables that are 
inputs to the CER. 
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5.0 STEP 5: CHARACTERIZE UNCERTAINTY 

 

Figure 71: Step 5: Characterize Uncertainty 

Risk and Uncertainty Analysis are vital parts of cost estimating, usually conducted at the Cost Model 
level. Understanding the risk and uncertainty associated with a CER is crucial to accurate implementation. 
The Mean Squared Error (MSE) specifies the overall error in the model. The focus is typically on 
prediction, and there is a high interest in the MSE of the predicted values, 𝒚�. This value can be derived 
using the following statement, 

𝑀𝑆𝐸(𝒚�) = 𝑉𝑎𝐴(𝒚�) + 𝑏𝐶𝑎𝑠2(𝒚�) 

The total error in the prediction is the variance of the prediction, plus the squared bias of the prediction. 
When possible, it is preferred to use a methodology where 𝑏𝐶𝑎𝑠2(𝒚�) = 0. However, it may be 
advantageous to introduce bias if it reduces the variance enough, and therefore the overall MSE. This is 
what 3.3.6 Ridge Regression does, demonstrated by Figure 72. 
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Figure 72: Bias versus Variance 

The wide density in black has zero bias with the true parameter value running through its peak, as 
designated by the dashed red line. The narrower density in blue does not estimate at the true value, but 
has less variation. 

– Terminology – 

The term bias has a very strict and well-defined statistical meaning. Bias is a theoretical mathematical 
calculation. Outside of a simulated environment, bias cannot be measured. In certain cases, it is possible 
to estimate it, but its calculation is dependent on the unknown, true value of the parameter(s) of interest. 

Bias for an estimator 𝜃� for estimating an unkonwn parameter θ is defined as: 

𝑏𝐶𝑎𝑠(𝜃�) = 𝐸(𝜃� ) − 𝜃 

In other words, bias is how far off from the true parameter value the estimated parameter actually is. In 
the case of regression models, an unbiased methodology has the following properties: 

𝐸(�̂� ) = 𝛽 

𝐸(𝜎�) = 𝜎2 

Or, the estimated coefficient parameters and the estimated variance mathematically achieve their true 
theoretical values. 

When quantifying uncertainty in the model, it is often impossible to separate variance and bias out from 
the MSE. Calculations can be derived, but are dependent on the true parameter values 𝑿 and 𝝈𝟐, which 
are unknown. However, it is still important to keep the concept in mind when generating confidence and 
prediction intervals. 

A resource for this analysis is the Joint Agency Cost and Schedule Risk and Uncertainty Handbook (JA 
CSRUH), 16 September 2014. In particular, see Section 2.4.2 Uncertainty of Parametric CERs (p. 16 ff.). 
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 Adjust Point Estimate 5.1
5.1.1 Overview 
The bias of an estimator is the difference between the expected value and the true value of the parameter 
being estimated. An estimator with zero bias is called unbiased. OLS Regression, under the correct 
assumptions, produces unbiased CERs. The estimate produced by the CER is a “best guess” as to the true 
average cost for a given element and corresponding input parameters. Otherwise the estimator is said to 
be biased. Mathematically the expected value of the estimated coefficients, 𝑿�, is equal to the true 
parameter values, 𝑿. The 3.3.1 Ordinary Least Squares (OLS), 3.3.2 Generalized Least Squares (GLS), 
and 3.3.4 Generalized Linear Model (GLM) models result in unbiased coefficient estimates in unit space. 
Section 3.3.5 Non-linear Least Squares (NLS) methods may result in unbiased estimators depending on 
the functional form, 𝐶(𝑿;𝑿), with one such example being the Power and Exponential Models (Section 
2.8.2 and 2.8.3). Section 3.3.6 Ridge Regression intentionally introduces bias to combat the 
multicollinearity problem. 

It is important to note the language that the aforementioned methods are unbiased under the correct 
assumptions. For example, one assumption that is not always stated is the independent variables in the 
CER are the “true” independent variables. Consider the following model, 

𝒚 = 𝛽0 + 𝛽1𝒙1 + 𝛽2𝒙2 + 𝜺 

This form is the unknown theoretical model, with two predictors 𝒙1 and 𝒙2. Suppose the following model 
is fit to test a given hypothesis, 

𝒚� = �̂�0 + �̂�1𝒙1 

The model is under-fit, leaving out the “true” predictor 𝒙2. In this scenario, the coefficient estimate �̂�1, 
and 𝒚�, are biased. There are other ways in which the resulting model can end up being biased, but 
corrections and estimations of the bias are possible only when it is known to be present, and even then is a 
challenge. As a result, there is no need to adjust the point estimate for any of the methodologies 
presented, with the exception of Log-Linear Regression. 

5.1.2 Adjusting the Log-Linear Regression Result 
One of the most popular methodologies with known bias is Log-Linear Regression (Section 3.3.3). Since 
the OLS Regression equation is unbiased, that means that for Log-Linear Regression, the fit equation is 
unbiased in log space. Unfortunately, the transformation back to unit space creates a bias such that Log-
Linear models systematically underestimate the response. One way to remember this is that the additive 
normal error (assumed by OLS) in log space becomes a multiplicative lognormal error in unit space. The 
former is the “related normal” distribution for that lognormal distribution. This transformation preserves 
the median, not the mean. A lognormal distribution shifts the mean to the right of the median, and shifts 
the mode to the left. 
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Log-Linear CERs estimate a median cost, not a mean. One solution for estimating at the mean is to apply 
the PING factor or the Goldberger factor (Appendix A.4.3.1 Mean Shift)71. This shift is also inherent in 
the Confidence and Prediction intervals. Alternatively, it may be easier to fit the non-linear Power or 
Exponential model directly in its non-linear form, utilizing either the 3.3.4 Generalized Linear Model 
(GLM), 3.3.5 Non-linear Least Squares (NLS) or Appendix B Maximum likelihood estimation for 
Regression of Log Normal error (MRLN) Summary. 

 Generate Confidence Interval 5.2
– Terminology – 

A confidence interval shows upper and lower bounds for a predicted mean response. In other words, a 
CER confidence interval may convey error around the average cost of a future system, were it to be 
produced many times. 

5.2.1 Overview 
The Confidence Interval (CI) about the regression equation captures only the uncertainty in the regression 
equation itself. Since a mean prediction for cost is desired, the statement can be made that the true mean 
response, 𝑦�, will fall within the CI (1 − 𝛼) ∙ 100% of the time, where 𝛼 is the significance level. The 
lower the significance level value, the higher the confidence level, and the wider the CI will have to be. 
One mnemonic is that the CI accounts for both the “bounce” and “wiggle” of the regression line, the 
former referring to the vertical uncertainty of the y-intercept, the latter to the diagonal uncertainty of the 
slope. 

The generic formulation of the confidence interval is, 

𝑃𝐸 − 𝐶𝑉 ∙ 𝑆𝐸 < 𝑦� < 𝑃𝐸 + 𝐶𝑉 ∙ 𝑆𝐸 

Or in interval notation, 

(𝑃𝐸 − 𝐶𝑉 ∙ 𝑆𝐸,𝑃𝐸 + 𝐶𝑉 ∙ 𝑆𝐸) 

Where, 

𝑃𝐸 = Point Estimate 
𝐶𝑉 = Critical Value 
𝑆𝐸 = Standard Error 

Common notation is to combine 𝐶𝑉 ∙ 𝑆𝐸 into a single term called the Margin of Error (MOE). Suppose a 
new set of values for the independent variables is to be predicted, notated as, 

                                                      

71 Note that the mean may be more influenced by the input values in a highly non-linear CER than the PING factor 
and in these cases, it may be simpler to note the CER is producing the median and model uncertainty accordingly. 
This would simplify documentation and use of the model. 
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𝒙′0 = �1, 𝑎0,1, 𝑎0,2, … , 𝑎0,𝑘� 

And the point estimate for this new data point is 𝐶(𝒙0′ ;𝑿�), or simply 𝒙0′ 𝑿� for OLS. The critical value 
relates the confidence level back to the parametric distribution assumed by the model, which is usually 
normality. Because the variance is an estimate, the normality assumption corresponds to the critical value 
coming from a t-distribution with 𝑙 − 𝐴 degrees of freedom, at the 1 − 𝛼

2
 level, denoted as 𝐴1−𝛼2

(𝑙 − 𝐴) 

and is usually around 2, depending on the number of degrees of freedom. The standard error (SE) is 
calculated off of the covariance matrix of the coefficient parameter estimates, at 𝒙0′ : 

𝑆𝐸 = �𝜎�2(𝒙0′ (𝑿′𝑿)−1𝒙0) 

Where, 

𝜎�2 = 𝑀𝑆𝐸 

Putting it all together, a (1 − 𝛼) ∙ 100% Confidence Interval for OLS at the point 𝒙0′  is, 

��𝒙0′ 𝑿�� − 𝐴1−𝛼2
(𝑙 − 𝐴) ∙ �𝜎�2(𝒙0′ (𝑿′𝑿)−1𝒙0), �𝒙0′ 𝑿�� + 𝐴1−𝛼2

(𝑙 − 𝐴) ∙ �𝜎�2(𝒙0′ (𝑿′𝑿)−1𝒙0)� 

In the single variable case with the new point 𝑎0, this simplifies down to, 

�(𝛽0 + 𝛽1𝑎0) − 𝐴1−𝛼2
(𝑙 − 𝐴) ∙ 𝜎��

1
𝑙

+
(𝑎0 − 𝑎)2

∑ 𝑎𝑖2𝑖 − 𝑙�̅�2
, (𝛽0 + 𝛽1𝑎0) + 𝐴1−𝛼2

(𝑙 − 𝐴) ∙ 𝜎�
1
𝑙

+
(𝑎0 − 𝑎)2

∑ 𝑎𝑖2𝑖 − 𝑙�̅�2
 � 

An alternate form of the scaling factor (𝜎� times the radical above), is: 

��
𝜎�
√𝑙

�
2

+ [𝑆𝐸(𝛽1) ∙ (𝑎0 − �̅�)]2 

This more clearly illustrates the “bounce” and the “wiggle” as the two components, combined in a 
Pythagorean Theorem manner (square root of sum of squares). The former is the uncertainty in the 𝑦-
intercept, which is the Root Mean Squared Error (RMSE) shrunk by a factor of the square root of 𝑙. The 
latter is the standard error of the slope, 𝛽1, times the distance away from the mean value of the input 
parameter. 

The interpretation of the confidence interval can be a bit tricky. The statement for a 95% CI would be that 
there is 95% confidence that the true mean response at the independent variable input 𝒙0 lies within the 
confidence interval. Running an infinite number of analyses on random samples of the same underlying 
true population dataset, 95% of the resulting CIs would capture the true values of the parameters. 
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5.2.2 Extension to Other Model Forms 
The general form of the confidence interval extends to other regression methodologies. The form is 
always 𝑃𝐸 ± 𝐶𝑉 ∙ 𝑆𝐸. The point estimate (PE) is easy to calculate by entering the new data and the 
coefficient estimates into the functional form. The critical value (CV) is from the assumed distribution. 
The standard error (SE) can become tricky for complex model forms, involving complex matrix calculus. 
Fortunately, software is able to output CI at requested locations for 𝑿. A summary of the general 
methodologies follows: 

Generalized Least Squares (GLS) – The exact SE can be calculated once the weights, 𝒘, are estimated. 
Calculate the MSE as with OLS, and the covariance matrix as 𝑀𝑆𝐸 ∙ (𝑿′𝑾𝑿)−1, compared to 𝑀𝑆𝐸 ∙
(𝑿′𝑿)−1 for OLS. 

Transformable Linear and the Log-Linear Model – Produce the confidence interval as a whole in the log 
transformed space under the same methodology as OLS (but after applying the appropriate adjustment as 
discussed in Section 5.1). Once produced, transform the entire interval back into unit space in the same 
fashion as with the point estimate. Note that this procedure results in the CI no longer being symmetric. 

Generalized Linear Model (GLM) – A common way to generate a confidence interval for the generalized 
linear model is to make use of likelihood ratios and the corresponding chi-squared distribution. This is 
more complex, but many statistical packages are able to produce them automatically. Alternatively, the 
final iteration of the numerical algorithm can return approximate standard errors for use in confidence 
interval calculations. This appeals to asymptotic normal properties and works well for large sample sizes 
but not so well for smaller samples, as are common in cost analysis. Then, generate the CI under the same 
formulations as OLS. 

Non-linear Least Squares (NLS) – The second method for GLM is often used to generate the confidence 
intervals for NLS. This is one of the reasons why a GLM model, when possible, is preferred to NLS: it 
can make use of the likelihood ratio tests and intervals. Alternatively, increasingly powerful computers 
have made the bootstrap approach popular (See Appendix A.4.7.4 and A.4.8.2). 

 Generate Prediction Interval 5.3
– Terminology – 

A prediction interval shows upper and lower bounds for a single predicted response. In other words, the 
CER prediction interval defines the potential error around the predicted cost of the future system. 

5.3.1 Overview 
The Prediction Interval (PI) is a direct extension on the CI. When making an estimate, the result of 
interest is typically not the mean response, but rather the predicted response for a single circumstance. As 
a result, the error for predicting a single point rather than a mean response is required. The following 
demonstrates the general concept of the difference between the two types of intervals: 

𝐶𝐼:𝒚�0 = 𝒙0′ 𝑿� 
𝑃𝐼:𝑦0 = 𝒙0′ 𝑿� + 𝜀0 
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The variance for 𝜀0 must be added into the interval for prediction, but not for the confidence interval. 
Since 𝑉𝑎𝐴(𝜀𝑖) = 𝜎�2, for OLS, all the calculations remain the same, except now the standard error (SE) is 
defined as, 

𝑆𝐸 = �𝜎�2 + 𝜎�2(𝒙0′ (𝑿′𝑿)−1𝒙0) 

= 𝜎��1 + (𝒙0′ (𝑿′𝑿)−1𝒙0) 

Due to this, the PI is always wider than the CI, since there is more uncertainty involved in estimating a 
single observation than a mean. From here, all the calculations and extensions to other models remain 
identical to those introduced with the CI. 

5.3.2 Example 
The single predictor case makes it easy to visualize both confidence and prediction intervals. Figure 73 
shows a scatter plot with both a 95% confidence interval and prediction interval for the example in 
Section 3.3.1.1 Simple Linear Regression (SLR). In this example, the confidence interval is fairly tight 
about the predicted line, but the low sample size and moderately sized variance cause for a much wider 
prediction interval. Both the confidence interval and the prediction interval are narrowest at the mean 
point (�̅�,𝑦�). 

 
Figure 73: OLS Example 95% Confidence/Prediction Intervals 
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Figure 74: Compare OLS CER PI to a Straight Average PI 

Figure 74 demonstrates how much smaller the OLS CER prediction interval is compared to the straight 
average PI shown in Figure 7: Confidence and Prediction Interval for the Straight Average of the 
Electronics Cost Data. 

Recall the OLS example from Section 3.3.1.3 using 𝑃𝐶𝑝𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 to model 𝐶𝐶𝑠𝐴. Using 
CO$TAT, a prediction interval is requested at the point 𝒙0′ = (15, 9), or at 𝑃𝐶𝑝𝐴𝐴 = 15 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
9). Figure 75 displays the prediction interval results. 

 

Figure 75: OLS Example Prediction Interval Output 

VI. Prediction Intervals

Estimate Inputs

Input Example
Power 15.0000
Aper 9.0000
Confidence Level (%) 90.00%

Prediction Results

Result Example
Lower Bound 447.5255
Estimate 515.4563
Upper Bound 583.3871

Delta(%)
Lower Bound 13.1788
Upper Bound 13.1788

RI$K(%) Multiplier
Lower Bound 86.8212
Upper Bound 113.1788
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The top table simply displays the inputs for both predictors, as well as the stated confidence interval. The 
bottom table returns the lower bound, the point estimate, and the upper bound. The Delta(%) is the 
percentage difference the lower and upper bound lie from the estimate. For example, 

𝐸𝑠𝐴𝐶𝑆𝑎𝐴𝐴 − 𝐿𝐶𝑝𝐴𝐴 𝐷𝐶𝐴𝑙𝐶
𝐸𝑠𝐴𝐶𝑆𝑎𝐴𝐴

=
515.4563 − 447.5255

515.4563
 

= 0.131788 
= 13.1788% 

The RI$K(%) Multiplier is simply a percentage factor applied to the estimate to produce the respective 
lower and upper bound. Note how the range of possible answers increases as you move towards the upper 
and lower bounds of the independent variable. 

Based on this example, the conclusion would be that there is 90% confidence that the true predicted value 
for cost when 𝑃𝐶𝑝𝐴𝐴 = 15 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 9 is between $447.5K and $583.4K. 

 Generate CER S-Curve and Histogram 5.4
To illustrate the full range of uncertainty around a predicted cost, it may be useful to construct an “S-
curve” and/or “Histogram” of the estimate. The S-curve is a visual of the cumulative distribution function 
(CDF) and the histogram is a visual of the probability density function (PDF). 

– Terminology – 

The Cumulative Distribution Function (CDF) and Probability Density Function (PDF) are the formal 
statistical terms. The CDF is referred to as an “S-curve” and the PDF as a “histogram.” Note that the 
PDF will not necessarily actually be “bell shaped” in nature, but it is often referred to as such all the 
same. 

Figure 76 and Figure 77 are an example of the CDF and PDF. These plots are for the OLS Example 
prediction interval calculated in the preceding Section 5.3. 
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Figure 76: OLS Example Prediction Interval 

CDF 

 
Figure 77: OLS Example Prediction Interval 

PDF 

 The S-curve provides the cumulative distribution of the predicted value (cost) evaluated at the requested 
point (𝑃𝐶𝑝𝐴𝐴 = 15 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 9). This interprets as a confidence interval from zero to the value 
on the curve. Construct the curve in the same way as a prediction interval, but vary the confidence level 
from 0 to 1. Therefore, the point estimate and the standard error remain the same as with the prediction 
interval, but with a varied critical value across the full range of probabilities,  

𝐶𝑉 = 𝐴𝛾(𝑙 − 𝐴) for 𝛾 = {0.00, 0.01, 0.02 , … ,1.00} 

In Figure 76, the intersection of the red lines on the CDF indicates the 80% estimate cost. Continuing the 
example, the interpretation would be that there is 80% confidence that the true predicted value for cost 
when 𝑃𝐶𝑝𝐴𝐴 = 15 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 9 is less than $545.4K FY16 (marked by the red vertical line). 

After a CER has been developed, diagnosed, and verified, and after quantifying Risk and Uncertainty by 
creating Confidence and Prediction Intervals, the next step is to document the CERs. Step 6: Document 
CER discusses the steps to properly document the work up to now and produce a final, defensible 
product. 
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6.0 STEP 6: DOCUMENT CER 
Regardless of how much work it takes to develop a CER, the final product will not stand without proper 
documentation. Effective documentation ensures the result can be traced back to the source data. 
Documentation also explains why the source data were selected and how this information was 
normalized. A well-documented CER enables an analyst to use and defend the CER in an informed 
manner. Documentation also provides other analysts with adequate information necessary to replicate the 
CER and to update, should additional data become available. Documentation may vary depending on the 
intended purpose of the CER, but the key components listed below and illustrated in Figure 78 are 
beneficial regardless of use:  

1. Scope / Purpose of the Recommended Cost Estimating Relationship 
2. Data 

a. Sources 
b. Raw Data 
c. Normalized Data  

3. CER Development 
a. Identify Cost Drivers 
b. Document Functional Form (Algebraic Equation) and Coefficient Values  
c. Document Statistics (Goodness of Fit) and Model Selection Methodology 
d. Characterize CER uncertainty 



 CER Development Handbook 
 

179 

 

Figure 78: Documenting the Estimating Relationship 

The following sections provide guidance on how to document a CER using the Electronics dataset as an 
example. 

References for documenting a cost estimate are: GAO Cost Estimating and Assessment Guide, GAO-09-
3SP, Government Accountability Office (GAO), March 2009; Department of the Navy NCCAINST 
4451.1B, Cost Estimating Documentation Policy, 28 September 2012; and NAVSEA Cost Estimating 
Handbook (CEH), Naval Sea Systems Command, 2005.  

 Scope/Purpose of the Recommended Cost Estimating Relationship 6.1
Define the cost element estimated by the CER. This enables the cost analyst using the CER to understand 
the scope of the estimate generated from the CER.  

When developing a parametric relationship, the more contextual data that is available, the easier to 
determine whether an old system is truly representative of the new system. The System Description 
includes a generalized description of the system type, as outlined by the system Work Breakdown 
Structure.  

Section 1.3.3 provides direction on developing an influence diagram illustrating the interrelationships of 
the variables thought to impact cost. In regards to CER documentation, start by capturing the objective for 
the CER. A good practice is including a qualitative description of the dependent variable for the CER 
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(what is being estimated). This enables the cost analyst using the CER to understand the scope of the 
estimate generated by the CER. Providing specific definitions for each component of the WBS structure 
helps to clearly explain what information is included and/or excluded for a particular item. For example: 

Electronics for the Air Vehicle (AV): The AV is the airborne platform for the UAV System. The AV 
serves as the carry vehicle for mission payloads or data link relay. The AV includes all of the hardware 
and equipment aboard the aircraft to enable flight. These components include: Airframe, Propulsion, 
Navigation and Guidance, Communications, Air Vehicle Central Computer, Flight Termination System, 
and Integration and Assembly.  

A CER was developed for the production of UAV guidance electronics. Since multiple units will be 
purchased, first unit cost and related information was collected or derived for each historical program.  

The recommended CER is:  

 𝑇1 = 317.7 ∗  𝐼𝑙𝐴𝐴𝑙𝑠𝐶𝐴𝑦 ^ 0.9088 ∗  1.101 ^ 𝐹𝐹𝑃 

Where, 

T1 = Theoretical first unit cost FY2016$K inclusive of overhead, not including fee 
Intensity = The power/aperture area in kilowatts per centimeter squared 
FFP = 1 if the contract strategy is Firm Fixed Price, 0 if Time and Materials 

The scope/purpose of the CER drives the data collection and analysis. Section 6.2 addresses 
documentation for the data (both dependent and independent variables) included in the analysis. 

 Data Documentation 6.2
Documenting the data is critical to establishing credibility and traceability of the CER. Documentation for 
the CER should include the data sources, the raw data, methods utilized for normalizing data, and the 
resulting normalized data. Data Sources should include the identification of technical, programmatic and 
cost data sources. For details, see Step 1: Purpose, Scope, Collect, Validate, & Normalize. 

To document the data utilized to develop the CER, provide tables with the raw data, normalized data, and 
a quantitative summary of the data. The remainder of this section addresses the quantitative summary of 
data sources and the database development and analysis. 

6.2.1 Data Sources 
Documenting data sources is important to provide for authenticity and accuracy. Documentation should 
include information associated with the specified systems and information about obtaining the data. 
Identification of data sources should include:  

• Performing organization (e.g., contractor name or government field activity) 
• Data source provider and pedigree (e.g., engineer or technical document)  
• Contract number (if applicable) 
• Period of performance 
• Program name 
• Report format (e.g., raw accounting data or contractor cost reports) 
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• Percent complete of the contract (if using a cost report) 
• Source of the data and dates collected 

Documentation requires a means to catalog, distinguish, and analyze the information. Consider 
developing a database, or data table, to document individual cost elements. Data should be stored in a 
format that allows access to all stakeholders.  

6.2.2 Raw Data 
Catalog and save all raw data in the original format. Then input the raw cost, technical, and programmatic 
data into a spreadsheet or database tool. Document the available cost data and pedigree, including data 
source, life cycle phase, cost interpretation, and quantity. For example, the data for Project 1 in Table 34 
should include a supporting narrative such as: Project 1 cost is the Average Unit Procurement Cost 
(AUPC) FY2004$K for the Project 1 contractor (use the project and contractor name) from the SAR 
report dated December, 2014, contract number 1234-C-08-789, with Period of Performance (PoP) 
spanning November 1, 2003 – September 30, 2014. 

 Table 34: Raw Cost Data and Notes 

 

Table 35: Technical and Programmatic data 

 

After compiling the raw data, this information needs to be normalized to enable consistent analysis 
between different systems. 
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6.2.3 Data Normalization 
Section 1.6 describes normalization methods. This section of the CER documentation should capture the 
key data and steps utilized in the normalization of the raw data. For data normalization, be sure to retain 
copies of the original raw data and normalized data. If escalation indices are used, be sure to collect the 
data source and publication date of the selected indices. Also, be sure to document the number of 
significant digits used in the normalization process.  

Project 2 in Table 34 provided raw cost data for Unit 10. The goal is to collect or derive the first unit cost 
(T1). Choosing to estimate the T1 means the actual or theoretical T1 of the source project is a good 
analogy to ours. Consequently, use the source slope to estimate T1 for Project 2. Table 36 shows the 
results of applying a unit CIC with a 95% slope to derive the T1.  

 Table 36: Deriving First Unit Cost 

 

The next step is to convert each cost to FY2016. Table 37 summarizes this process. However, the source 
of the FY to FY raw escalation indices is required. In addition, to develop the weighted escalation indices 
needed to convert TY to FY, the source of the outlay profile must also be identified. Table 37 lacks 
adequate information for complete documentation. Additional documentation fields include data source, 
outlay profiles, and appropriation (if applicable).  

Table 37: Converting Raw Cost to a Base Year 2016 Cost 

 

Table 38 summarizes the normalized data that will be used to derive the CER. All data are in consistent 
units and context. 

Observation
First Unit 

Cost
Dollar 
Type Year BYtoBY TYtoBY

Normalized 
Cost

Project 1 $312.5 Constant 2004 1.248132 $390.0
Project 2 $186.4 Constant 2011 1.073029 $200.0
Project 3 $234.6 Constant 2014 1.023132 $240.0
Project 4 $264.4 Budget 2007 1.134794 $300.0
Project 5 $413.7 Budget 2008 1.111997 $460.0
Project 6 $544.4 Budget 2013 1.028587 $560.0
Project 7 $584.4 Budget 2005 1.197909 $700.0
Project 8 $752.8 Budget 2011 1.062648 $800.0
Project 9 $479.0 Budget 2012 1.043737 $500.0
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Table 38: Key Normalized Electronics Data 

 

The most effective way to ensure an analysis is repeatable and updateable is to provide the raw and 
normalized data tables along with all the adjustment factors in the documentation.  

Once the estimate’s scope and the system description have been documented, the resulting documentation 
illustrates how the estimate was derived using the selected CER. 

 CER Development 6.3
Step 2: Analyze Normalized Data provides additional information regarding how to utilize collected data 
and to determine the appropriate regression methodology. In terms of documentation, ensure that the 
following elements are included: 

(1) Identify Cost Drivers 
(2) Document Regression Method Selection and CER Functional Forms 
(3) Document the Selected CER 
(4) Characterize CER Uncertainty 

6.3.1 Identify Cost Drivers 
Step 2: Analyze Normalized Data provides more information on the steps to identify the relevant cost 
drivers. Section 2.5 through 2.8 discussed cost driver exploration and selection. Documentation should 
include a discussion of all technical, programmatic, and cost parameters considered to ensure a complete 
understanding of the totality of the effort and analysis involved in the CER development.  

Including an influence diagram (Figure 3: Simplified Influence Diagram Example) in the CER 
documentation is a good way to visualize relationships between data and highlight potential cost drivers. 

Include a description clearly stating how correlation was examined in the cost driver assessment process. 
For example, Table 39 contains PPM correlation coefficients and Table 40 provides the Spearman Rank 
correlation coefficients for the Electronics data.  
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Table 39: Pearson Product Moment Correlation 

 

Table 40: Spearman Rank Correlation 

 

In addition to providing the tables, discuss which values led to the selected parameters highlighted in the 
following steps. Be sure to include supporting visual representations, graphs, and tables as these artifacts 
are critical components of a well-documented cost estimate. Table 39, Table 40, and Figure 79 provide 
examples of these visual illustrations.  
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Figure 79: Electronics Data Scatter Plots 

6.3.2 Document Regression Method Selection and CER Functional Forms 
Step 3: Generate CER provides additional information on how to choose a regression method and CER 
functional form. All CERs evaluated in the process of determining the best CER should be documented in 
this section. An abbreviated example of a supporting rationale is: 

“For the Electronics data, the scatter plots and pairwise analysis indicate the potential 
for linear relationships. Subject matter expert advice or historical CERs on similar 
systems confirm this selection or point to other starting points. Ordinary Least Squares 
(OLS) was selected due to the presence of strong linear correlation. Dummy variable and 
log linear OLS are also explored.” 

Section 2.8 discusses functional forms and Section 4.4 identifies the relevant statistics to determine if the 
CER is statistically significant. Documentation should include the criteria used to evaluate the CERs, the 
following model-fit metrics provide an example (Note: this example provides notional values as each 
organization may reference different predictive metric benchmarks for each predictive metric):  

• p-value <= 5% for t and F 
• R2

adj > 60% 
Table 41 summarizes the statistical significance for the ten functional forms that were explored. Several 
failed the criteria despite having excellent R2

Adj. Although the intercept p-value fails for functional form 4 
and 5, they are still labeled as “Passed” consistent with guidance in 4.4 Model Significance. 
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Table 41: Summary Results: Fit Statistics 

 

Section 4.5 Model Quality identifies the statistics used to assess the predictive power of the CERs. Table 
42 summarizes some predictive statistics for the six statistically significant functional forms . There are 
several other predictive metrics available, as described in 4.5.2 Assess Metrics of Prediction. Each 
organization may reference different predictive metric benchmarks for each predictive metric. 

Table 42: Summary Results: Predictive Statistics 

 

Equation 5 has the best predictive statistics, but is not selected. Figure 80 plots the standardized residual 
for candidate CERs 5 and 10. CER 10 appears to conform to the “normally” distributed assumption better 
than CER 5 (see Section 4.2.1.4). CER 10 is selected. Additionally, CER 10 has a multiplicative error 
term, which is generally preferred in cost analysis because the error scales with the estimate72. 

                                                      

72 See JA CSRUH, para 2.4.2.1 
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Figure 80: Electronics Data Normal Probability Plot 

6.3.3 Document the Selected CER 
Step 4: Validate CER provides a detailed explanation of the statistics associated with the CER. The 
following is a list of key information that to be included: 

• When the regression was performed and by whom 
• Sample size, degrees of freedom, regression method, and the actual regression equation 
• If any observations were manually excluded, they should be identified with an explanation for 

their exclusion (there needs to be a sound reason to exclude any data point) 
• The Coefficient Summary Table reports the value of each coefficient developed by the 

regression method, its standard error, t-statistic, p-value and the potential range of the coefficient 
(Note: not all regression methods will yield a p-value). 

• The Coefficient of Determination 𝑅2 and 𝑅𝑟𝑟𝑗2 . (Note: not all regression methods will yield a 𝑅2 
and 𝑅𝑟𝑟𝑗2  value). 

• The Analysis of Variance (ANOVA) Table provides the sum of squares (regression, 
residual/error, and total), mean squared error (MSE), and overall model F-statistic and p-value. 

• A correlation matrix of the independent variables used in the CER (and/or variance inflation 
factors (VIFs)) to assess the presence of multicollinearity 

• An outlier table in order to identify dependent and independent values that are outliers and if 
they have a significant influence on the regression result. Typical elements of an outlier analysis 
table include: residuals, standard residuals (indicates observations with an unusual response), 
leverage (test statistic for an extreme value of the independent variable), Cook’s D (indicates the 
observation influencing the fitted regression) 

• Summary of predictive statistics evaluated in unit space 
• Table 43 identifies a few recommended charts to include as part of the CER documentation 
• Prediction Intervals: Often, the regression software can generate the estimate prediction interval. 
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Table 43: Summary of Graphs to Include in Documentation 

Graph Significance to Analyst Understanding 
Residual Plot • Reasonableness of the model assumptions. “Poor” 

residual plots may indicate an inappropriate model 
in terms of functional form and/or cost drivers as 
well as inflated uncertainty in the result. 

• Presence of potential outlier and influential points 
on the analysis. 

Normal Probability Plot • Reasonableness of the normality assumption. “Poor” 
normality plots may indicate a non-normal model, 
which may have impacts on functional form and/or 
cost drivers as well as understated uncertainty in the 
result. 

Predicted versus Actual Plot • Reasonableness of the model assumptions. “Poor” 
plots may indicate an inappropriate model in terms 
of functional form and/or cost drivers. 

Leverage Plot • Presence of observations in the dataset “far” away 
from the center of the data, which may have large 
impacts on the model. 

 

Figure 81 and Figure 82 are examples of required documentation. The CER is generated from the data in 
Table 38. 
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Figure 81: Documenting Fit Statistics and ANOVA 
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Figure 82: Documenting Outlier Analysis and Predictive Measures 

 

Figure 83 provides an example of several charts that should be included as part of the final 
documentation. 
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Figure 83: Representative Charts to Document the CER 

 

6.3.4 Characterize CER Uncertainty 
Step 5: Characterize Uncertainty provides guidance on how to model CER uncertainty. How this process 
is executed can be heavily influenced by the regression method selected. Regardless of the method 
selected, the documentation should report the confidence interval and the prediction interval (see 5.2 and 
5.3 for additional information).  

For generic methods of defining the CER confidence and prediction intervals, see the Joint Agency 
Cost Schedule Risk and Uncertainty Handbook.  
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If the point estimate values for the new project are known, the prediction interval can be calculated for 
OLS and estimated for MUPE and NLS. Figure 84, identifies the prediction intervals for an FFP contract 
based on a low, nominal and high value for Intensity (kWperCm2) at the 90% confidence level. In this 
case, the CER result is known to be the median of a lognormal distribution. Using @RISK, Crystal Ball 
or ACEIT, a normal or lognormal distribution can be modeled from two known points. The CER result 
(median) is one point. The other can be either the low (5th  percentile) or high (95th  percentile) value 
documented in Figure 84. 

 

Figure 84: Documenting Representative Prediction Intervals 

While the aforementioned information is critical, when in doubt include as much information as possible 
(even if in appendices) as this information may be useful in later analysis. Ensure the documentation 
provides enough information to effectively identify and explain sources of uncertainty. 
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APPENDIX    

APPENDIX A GENERAL THEORY 
This Appendix is intended to provide supplementary content to complement the CER Development 
Guide, including the most important analytical techniques from mathematics, applied mathematics, 
probability and statistics, and operations research commonly used in cost estimating and risk analysis. 
While the Flow Chart steps, discussed in the main body of this documentation, mention many of these 
techniques and present examples, refer to the Appendix sections below for detailed derivations and 
computations.  

Where time and space considerations have precluded a thorough discussion, links to some external 
references are provided to help understand and recreate the needed analytical steps to implement these 
techniques.  Motivated analysts may want to search further, as extensivc statistical references are 
available through other venues (e.g., the internet).  Most of the resources identified in this appendix 
provide reference to additional related material.  This appendix provides links to resources, (color-coded) 
in the following categories: 

Statistical Textbooks: Many of the mathematical and statistical techniques are not unique to cost 
estimating, and discussed at length in various college-level textbooks. 

CEBoK®: The Cost Estimating Body of Knowledge is a desktop reference, certification study guide, and 
training curriculum provided by the International Cost Estimating and Analysis Association (ICEAA). It 
is a seminal reference divided into sixteen modules, and the most recent version is v1.2 (2013). A 
companion guide is the Parametric Estimating Handbook (PEH), produced by the legacy International 
Society of Parametric Analysts (ISPA), now part of ICEAA. As of this writing, PEH content is in the 
process of merging with CEBoK®, and references provide direct links to version 4 of the PEH where 
appropriate. 

Professional papers: Often the most thorough references for cost-specific application of analytical 
techniques are papers presented in forums such as the annual ICEAA conference or the Department of 
Defense and Department of Navy Cost Analysis Symposia (DoDCAS/DONCAS), or published in the 
Journal of Cost Analysis and Parametrics (JCAP). 

DoD Instructions, Handbooks, etc.: DoD issued instructions are useful resources to trace and comply 
with current DoD policy and procedures. 

Course Materials: For instance Defense Acquisition University (DAU) course BCF 204, Intermediate 
Cost Analysis has extensive course materials, available at no cost, that serve as a basic reference for cost 
analysts. 
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A.1 Arithmetic 
A.1.1 Basic Operations 

A.1.1.1 Exponentiation 
Exponentiation is repeated multiplication. The notation 53 is equivalent to 5 × 5 × 5. In that case, 3 is the 
exponent (or power) while 5 is the base. Define negative exponents via 𝑏−𝑛 = 1

𝑏𝑛
, and fractional 

exponents by 𝑏
𝑚
𝑛 = √𝑏𝑚𝑛 . In the context of cost estimating, this operation is most applicable in the case 

of exponential and power functional forms. 

A few useful algebraic properties of exponents are as follows: 

𝐴𝑥 ∙ 𝐴𝑦 = 𝐴𝑥+𝑦 
𝐴𝑥

𝐴𝑦
= 𝐴𝑥−𝑦 

(𝐴𝑥)𝑦 = 𝐴𝑥𝑦 

A.1.1.2  Logarithm 
Logarithms are the inverse of Exponentiation. That is, for a base 𝑏 the log of a number 𝑎 is written as 
log𝑏(𝑎) and is defined as the number 𝑦 such that 𝑏𝑦 = 𝑎. That is, the logarithm answers the question “To 
what exponent should I raise the base to get the given number?” As a result, the first property of 
logarithms is log𝑏(𝑏𝑦) = 𝑦. Here, logarithms “undo” exponentiation, just as division “undoes” 
multiplication. In the context of cost estimating, this operation is most applicable in the transformations of 
independent variables in linearizing a Power Functional Form and (less often) the logarithmic functional 
form of CERs. 

A few useful algebraic properties of logarithms are as follows: 

logb(𝑎) + logb(𝑦) = log𝑏(𝑎𝑦) 

logb(𝑎) − logb(𝑦) = log𝑏 �
𝑎
𝑦
� 

𝑎 ∙ log𝑏(𝑦) = log𝑏(𝑦𝑥) 

Hass, Joel, George B. Thomas, Jr. and Maurice D. Weir, University Calculus, page 376-8.  

A.1.2 Weights 

In this context weights, or weightings, are methods used to give certain elements greater influence than 
other elements on the final result. Examples include weights used to correct for differing sample sizes 
when aggregating averages, and criteria weighting in decision analysis or analysis of alternative 
evaluations. 

Ascher, Uri M. and Chen Grief, A First Course in Numerical Methods, page 373.  
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A.1.3 Linear Algebra 

Vector and matrix representations are useful tools to simplify the mathematics used in applied statistics 
and econometrics. 

Shores, Thomas S., Applied Linear Algebra and Matrix Analysis. 

A.2 Probability 
In its most general terms, probability is a measure of how likely an event (or set of events) is to occur. It 
is a broad area of mathematics that involves making conclusions about occurrences based on an 
understanding of the underlying process driving those occurrences. Conversely, statistics examines a set 
of occurrences and makes more general conclusions about the underlying process dictating those 
occurrences. These two areas, probability and statistics, go hand-in-hand. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 7-81. 

A.2.1 Foundations of Probability 

Probability is an area of mathematics focused on the underlying principles of random variables, which in 
turn help to serve as a foundation for the field of statistics. This is an extremely broad field with wide-
reaching practical impact that includes results such as the central limit theorem, the law of large numbers, 
and distributions of non-deterministic events.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 7-81. 

A.2.1.1 Discrete Distributions 
A discrete distribution defines the probability of occurrence of events from a discrete random variable. A 
discrete random variable is one that can only take on discrete values. Examples include flipping a coin, 
rolling die, and whether or not a schedule slip occurs. For the coin flip there are only two possibilities, for 
the rolling die there are six, and the schedule slip will either occur or it will not. This is in contrast to 
continuous distributions that describe the occurrence of events from a set of continuous possibilities, such 
as the height of a child on their 5th birthday, or the duration of schedule slip experienced by a program. In 
these cases, the possibilities are from a continuous set (e.g., the child could be 12.3 in. tall, 38.6 in. tall, 
some other value between these heights, or virtually any other number). 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 42-49, 59. 

A.2.1.1.1 Probability Mass Function (pmf) 
A probability mass function, 𝐶𝑋, defines the probability that a discrete random variable 𝑋 will take on a 
particular value. For a random variable 𝑋 the probability that 𝑋 will take on the value 𝑎 is written as 
𝐶𝑋(𝑎). For example, if a flip of the coin is a random variable 𝑌 then the probability that 𝑌 will be heads is 
𝐶𝑌(heads) = 1

2
. 
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Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 21, 62. 

A.2.1.1.2 Cumulative Distribution Function (cdf), Discrete 
The cumulative distribution for a random variable 𝑋 is a function, 𝐹𝑋(𝑎), that calculates the probability of 
the random variable attaining a value less than or equal to 𝑎. For a discrete random variable, that means 
that the cdf is simply the sum of the pmf evaluated at values less than or equal to 𝑎. For example, the 
probability that the roll of a die will be less than or equal to 4 is the probability that the roll is a 1, plus the 
probability that the roll is a 2, plus the probability that the roll is a 3, plus the probability that the roll is a 
4. More succinctly, 𝐹𝑋(4) = 𝐶𝑥(1) + 𝐶𝑥(2) + 𝐶𝑥(3) + 𝐶𝑥(4) = 1

6
+ 1

6
+ 1

6
+ 1

6
= 4

6
= 2

3
. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 21, 23, 62. 

A.2.1.2 Continuous Distributions 
A continuous distribution defines the probability of occurrence for events from a continuous random 
variable. Continuous random variables are those random variables that can take on values from anywhere 
within a range of values. Examples include the weight of a ship, or the total time for schedule 
competition. This is in contrast to discrete distributions that describe the occurrence of events from a set 
of discrete possibilities such as flipping a coin. The value of a coin flip is either heads or tails; a coin flip 
resulting in a value between heads and tails is impossible.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 49-62. 

A.2.1.2.1 Probability Density Function (pdf) 
The probability density function, 𝐶𝑋, of a continuous random variable 𝑋 describes the likelihood for 𝑋 to 
take on a given value. Unlike in probability mass functions for discrete variables, for a continuous 
distribution the probability of attaining a single variable is zero despite the fact that 𝐶𝑋(𝑎) may not be 
equal to zero. This is a property of the fact that continuous distributions can attain an unaccountably 
infinite number of values and thus the probability of any single event is effectively zero. However, for 
continuous distributions the cumulative distribution function is useful in determining the probability that 
the random variable takes on a value within some range. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 22-23, 62. 

A.2.1.2.2 Cumulative Distribution Function (cdf), Continuous 
The cumulative distribution for a random variable 𝑋 is a function, 𝐹𝑋(𝑎), that calculates the probability of 
the random variable attaining a value less than or equal to 𝑎. For a continuous random variable the cdf is 
an integral that starts at −∞ and ends at 𝑎, 𝐹𝑋(𝑎) = ∫ 𝐶𝑋(𝑎)𝐶𝑎𝑟

−∞ . The cdf is also useful in determining 
the probability of the random variable attaining a value between 𝑎 and 𝑏. Such a probability is simply 
𝐹𝑋(𝑏) − 𝐹𝑥(𝑎) = ∫ 𝐶𝑋(𝑎)𝐶𝑎𝑏

𝑟 . 
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Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 21, 23, 62. 

A.2.1.3 Percentiles 
The 𝑙𝑡ℎ percentile of a random variable or distribution is the value under which 𝑙 percent of the possible 
values occur. For example, the 35th percentile of a dataset is the smallest value 𝑎 such that 35% of the 
observations in the set are less than or equal to 𝑎.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 29-30. 

A.2.1.4 Correlation 
In the broad sense, correlation refers to any type of statistical dependency between data sets. A common 
example of correlation is the measure of the linear relationship between two random variables. For 
random variables 𝑋 and 𝑌 with means 𝜇𝑋 and 𝜇𝑌, and standard deviations 𝜎𝑋 and 𝜎𝑌, the equation for the 
PPM correlation coefficient between 𝑋 and 𝑌 is, 

𝐶𝐶𝐴𝐴(𝑋,𝑌) =
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 

The correlation always takes on a value between -1 and 1, inclusive. 

A positive PPM correlation indicates that relatively high values of one random variable signify a 
likelihood of relatively high values of the other. Conversely, relatively low values of one random variable 
indicate relatively low values of the other. In the case where correlation is negative, high values in one 
variable indicate a likelihood of low values in the other variable. It is important to remember that PPM 
correlation measures the magnitude and strength of linear relationships. A PPM correlation of zero, 
implying no linear relationship, can exist between two random variables with a strong non-linear 
relationship. 

In cost estimating, well-known correlations include positive relationships between cost and weight of a 
vehicle, as well as costs between program management and overall program cost, excluding program 
management. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 38-39. 

A.2.1.5 Covariance 
Covariance is a measure of how much two random variables change together. If the variables tend to 
show similar behavior (i.e., greater values in one variable imply greater values in the other variable), then 
those random variables are said to be positively correlated. Conversely if they show opposite behaviors 
(i.e., greater values in one variable imply lesser values in the other) then the variables are said to be 
negatively correlated. For random variables 𝑋 and 𝑌 with means 𝜇𝑋 and 𝜇𝑌, the equation for the 
covariance of 𝑋 and 𝑌 is cov(𝑋,𝑌) = 𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)], and is sometimes notated as 𝜎𝑋,𝑌. The 
covariance differs from correlation in that it is not bounded between -1 and 1. This makes comparisons of 
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covariance between different pairs of distributions difficult if the magnitude of those distributions differ 
greatly. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 36-38. 

A.2.2 Probability Distributions 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, page 62. 

A.2.2.1 Discrete Distributions 
• Uniform Distribution (Discrete) 
• Bernoulli Distribution 
• Binomial Distribution 

A.2.2.2 Continuous Distributions 
• Uniform Distribution (Continuous) 
• Normal Distribution 
• Log-normal Distribution 
• Student’s t Distribution 
• Exponential Distribution 
• F Distribution 
• Chi-Squared Distribution 

A.2.2.3 Exponential Family Distributions 
The exponential family of probability distributions are a convenient set of distributions which can take on 
the following generic form: 

𝐶(𝑎|𝜽) = ℎ(𝑎) ∙ 𝐶(𝜽) ∙ 𝐴∑ 𝑟𝑖(𝜽)∙𝜏𝑖(𝑥)𝑘
𝑖=1  

Common distributions belonging to the exponential family include: 

• Exponential • Poisson 

• Normal • Binomial 

• Chi-squared • Beta 

• Gamma  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 24, 50-51, 59, 63. 

A.3 Statistics 
In its most general terms, statistics is the study of a set of observed data and drawing conclusions about 
the underlying processes driving those observations. It is a broad area of applied mathematics closely 
related to probability. The two major subfields of statistics are descriptive statistics and inferential 
statistics. Descriptive statistics provide quantifiable information summarizing the primary features of 
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observed data. Inferential statistics is the field of drawing conclusions about observed data and the 
underlying sources of that data. In a way, descriptive statistics can be thought of as the “reporting” side of 
data collection and analysis. Inferential statistics can be thought of as the “analysis” side of data 
collection and analysis. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate. 

A.3.1 Descriptive Statistics 

Descriptive statistics is a major branch of statistics that focuses on providing quantifiable information by 
summarizing the primary features of a set (or sets) of observed data. In practice this involves 
visualizations of data (e.g., histograms, scatter plots), and quantification of data set properties (e.g., 
sample mean, sample variance, min, max, interquartile range).  

In cost estimating this topic is most often encountered in the analysis of historical data. For example, a 
succinct description of vehicle production times might be best described via the mean and variance for 
production times, and a scatter plot of production times over time.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, page 2. 

A.3.1.1 Statistical Graphics 
Statistical graphics is a broad term including all data visualization methods commonly used in descriptive 
statistics reporting. The goal of these methods is to convey relevant information about the data sets in a 
clear and concise way. The most common types of plots and graphs are included in the subsections below. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate. 

A.3.1.1.1 Scatter Plot 
A scatter plot is a graphical representation of values for two variables for a set of data. These plots are 
easy to generate using virtually any statistical software package. The plots help an analyst develop an 
intuitive understanding of the data set’s properties and the possible relationships between variables within 
the data set. For this reason it is highly recommended to generate scatter plots between pairs of variables 
within the data sets at the start of any data analysis effort.  

The data are displayed as a collection of points in the Cartesian plane. The location of each point is 
determined by the values of the variables being plotted. For instance, a scatter plot of weight vs. cost for 
ships would have weight on the horizontal axis and cost on the vertical axis. A point of the scatter plot is 
placed on the graph representing each ship in the data set with the vertical position of the point 
determined by the cost of the ship and the horizontal position determined by the weight of the ship. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 132-134, 149, 289, 348-349. 
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A.3.1.1.2 Histogram 
A histogram is a graphical representation of the distribution of the data for one variable of the data set. 
The standard format is a column chart with the horizontal axis corresponding to one variable from the 
data set, and the vertical axis corresponding to a count of occurrences. The horizontal axis is broken into 
ranges, or bins, and the height of the column for each range is determined by the number of observations 
with values in that range for the given variable.  

 

A critical part of the construction of any histogram is determining how many intervals (bins) the data 
should be grouped into. For the purposes of visualizing the data, the choice of bin size should be one that 
best illustrates the overall distribution of the data set. Almost universally, the width of each bin is the 
same for each bin, but the determination of an appropriate bin size is not always clear.  

There is no standard approach, but there are several well-known options. Excel takes the square root of 
the sample size. The Mann-Wald method is used by @RISK, Crystal Ball and CO$TAT to determine the 
number of bins for the Chi-squared goodness of fit test. Mann-Wald-divided-by-two is recommended for 
use as a first approximation of bin count for histograms and as the basis for the chi-squared goodness-of-
fit test for samples with less than thirty observations.  

For analytical purposes such as distribution fitting and/or hypothesis tests (e.g., Chi-squared test), a more 
systematic approach is required. In these cases the bin widths are of equal probability, not interval. The 
Joint Agency Cost and Schedule Risk and Uncertainty Handbook provides a more in-depth discussion on 
common selection methodologies for these purposes. 

Table 44 contains methods to determine histogram bin width73.  

                                                      

73 From JA CSRUH Table A-14,, page A-43. 
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Table 44: Methods to Determine Histogram Bin Width 

 

A.3.1.1.3 Empirical CDF 
An empirical cumulative distribution function (CDF) plot is similar in principle to a cumulative 
distribution function of a probabilistic distribution. The plot is a two-dimensional plot with the horizontal 
axis providing values from the range of the data set, and the vertical axis listing the percentiles from 0 to 
100. The line plot describes, for any value in the range of the data set, what percent of the data set is 
below that value.  

An S-curve, such as one derived from risk analysis, is by far the most common instance of an empirical 
CDF in cost estimating. 

van der Vaart, A.W., Asymptotic Statistics, page 265. 

A.3.1.1.4 Bar and Column Charts 
A bar chart is a plot of bars corresponding to different observations of the data set. The relative size of the 
bars indicates the magnitude of the variable for each element from the data set represented in the chart. 
Commonly, a bar chart is one where the bars a drawn horizontally, with “longer” bars corresponding to 
those observations with larger values. Alternatively, a column chart draws the bars vertically, with 
“taller” bars, in this case columns, corresponding to observations with larger values.  

Histograms and S-curves (Empirical CDFs) are column charts commonly encountered in cost estimating. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 109, 148. 
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A.3.1.1.5 Q-Q Plot 
A Q-Q plot, or “quantile-quantile plot” is used to compare two distributions. In descriptive statistics this 
commonly involves comparing observed data to a theoretical distribution the data are hypothesized to fit. 
In essence, this plot is simply a scatter plot with percentiles of each distributions on the vertical and 
horizontal axes. If the data sets are of the same size, or if one is derived from a theoretical distribution, 
then the plot is simply a plot of points where the horizontal location of the point is determined by the 
percentile of one data set and the vertical location is determined by the other data set. The case with data 
sets of different size is more complex and requires a level of interpolation between the points of the 
smaller data set. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 271, 289. 

A.3.1.1.6 Box Plot 
Box plots are variations of bar charts that display the major quartiles of a data set or distribution. They are 
also known as box-and-whisker plots. Rather than a full column or bar however, the chart consists of a 
rectangle for each category. The rectangle contains a line indicating the median (50th percentile) of the 
distribution. The short ends of the rectangle indicate the first and third quartiles (25th and 75th percentile 
respectively). In some variations, “whiskers” beyond the edges of the rectangle are applied to indicate the 
2nd and 98th percentiles. Other variations on this idea exist, but the format described here is the most 
common. 

Box plots are discussed on slides 57 and 58 in the Related and Advanced Topics section of CEBoK® 
Module 6 Basic Data Analysis Principles, with a strong emphasis on visual display of information. They 
are presented as an alternative to histograms, highlighting the quartiles (i.e., 25th, 50th, and 75th 
percentiles) of the data and any potential outliers. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 121-122, 148. 

A.3.1.1.7 Stem-and-Leaf Plot 
A stem-and-leaf plot is similar to a histogram, and like a histogram conveys the distribution of points 
within a data set. The format consists of a vertical line with all but the last digit of each data point on the 
left hand side of the line and the final digit of each data point on the right hand side of the line. Much like 
the binning required for generating a histogram, some rounding may be required to create a stem-and-leaf 
plot. These plots maintain a level of order to the data and at least two significant digits of the data values. 
For these reasons, stem-and-leaf plots are sometimes preferred over histograms in non-parametric data 
analysis. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 120-121, 148. 
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A.3.1.2 Measures of Central Tendency 
In statistics, the central tendency of a data set is a value that is “typical” of the distribution or a variable of 
the data set. There are a number of different ways to interpret the concept of “typical,” and as a result 
there are multiple measures of central tendency.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 111-113. 

A.3.1.2.1 Mean 
The mean, commonly referred to as the arithmetic mean, average, or the expected value, is a measure of 
central tendency that is most commonly referred to when describing the “center” of a data set or 
distribution. If a random variable 𝑋 is discrete, the mean of 𝑋 is denoted as 𝐸[𝑋] and calculated as 

𝐸[𝑋] = �1
𝑛
�∑ 𝑎𝑖𝐶𝑋(𝑎𝑖)𝑖  where 𝑎𝑖 is a possible value of 𝑋, and 𝐶𝑋(𝑎𝑖) is the probability mass function of 

the random variable 𝑋. If 𝑋 is a continuous random variable, then 𝐸[𝑋] = ∫ 𝑎𝐶𝑋(𝑎)𝐶𝑎∞
−∞  where 𝐶𝑋 is the 

probability density function of 𝑋.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 111-113.   

Arithmetic Mean 
The arithmetic mean is the best known mean, so much so that in most cases when someone says the word 
“mean” or “average” they are almost always referring to the arithmetic mean. 

Arithmetic Mean, Unweighted 
As the arithmetic mean is the most common version of the mean, the unweighted version is the most 
common version of the arithmetic mean. It is simply the sum of data set values divided by the number of 
values. For example, the arithmetic mean of the numbers (5, 6, 8, 9, 56) is (5 + 6 + 8 + 9 + 56)/5 =
16.8. In general, for a set of observations 𝑎𝑖 , 𝐶 = 1, … ,𝑙 the equation for the unweighted arithmetic mean 
is  

�̅� =
1
𝑙
�𝑎𝑖

𝑛

𝑖=1

 

In cost estimating this calculation is useful in those cases where a single average is sufficiently 
representative of a group. For example, calculating the average labor rate across all individuals. 

Arithmetic Mean, Weighted 
In the unweighted arithmetic mean, all points have an equal amount of influence on the final average. 
However, in the weighted arithmetic mean extra “weight” (𝑝𝑖) is given to some observations, and as a 
result, those points have a greater effect on the final mean. The weighted arithmetic mean for a set of 

observations 𝑎𝑖, and weights 𝑝𝑖 , for 𝐶 = 1, … ,𝑙 is �̅� = ∑ 𝑟𝑖𝑥𝑖𝑖
∑ 𝑟𝑖𝑖

. Notice that if all of the weights are 1 (i.e., 

𝑝𝑖 = 1 for all 𝐶), then the weighted mean simply reduces to the unweighted mean. Often the sum of the 
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weights is constrained to 1, so that a data point is given more or less weight than in the unweighted mean 
depending on whether 𝑝𝑖 > 1 𝑙�  or 𝑝𝑖 < 1 𝑙� . 

In cost estimating, the weighted arithmetic mean is useful in calculating an average for a set using only 
averages from distinct subsets within the group. For example, if a program had 40 FTEs from contractor 
A at an average labor rate of $60/hr, and 12 FTEs from contractor B at an average labor rate of $78/hr, the 
average across all of the contractors can be found by weighting each of the average labor rates by the 
number of contractors. That is, the weights are 40 and 12, and the average labor rate across all contractors 
is, 

40 �$60
hr � + 12 �$78

hr �

40 + 12
=

$3336
hr
52

≈
$64
hr

  

Note how this is more representative of the average labor rate for the workforce between the two 
contractors as opposed to simply taking the average of $60/hr and $78/hr. 

Moriarity, D.J., Basic Statistics Review – Part One, California Polytechnic Institute, pages 5-6. 

Geometric Mean 
The geometric mean is useful for averaging sets of positive numbers usually interpreted according to their 
product. For example, a growth factor is a compounding value that is almost always multiplied by another 
such factor. Thus, a geometric mean is a more representative average of a set of growth rates than the 
arithmetic mean would be. There are two variations of the geometric mean: the unweighted geometric 
mean and the weighted geometric mean. Usually, the term “geometric mean” is referring to the 
unweighted geometric mean. 

Kalder, Robin S., Ed.D., “Geometric Mean – What Does it Mean?”, Department of Mathematical 
Sciences, Central Connecticut State University, New Britain, CT, June 2012.  Note: extensive references.  

Geometric Mean, Unweighted 

For a set of numbers 𝑎𝑖 (𝐶 = 1, . . ,𝑙), the geometric mean is calculated as the 𝑙𝑡ℎ root of the product 
�∏𝑎𝑖
𝑛 . This calculation is commonly used in cost estimating when compounding the average growth rate 
across periods of equal length. In the case where the periods are of unequal length, a weighted geometric 
mean should be used. 

Kalder, Robin S., Ed.D., “Geometric Mean – What Does it Mean?”, Department of Mathematical 
Sciences, Central Connecticut State University, New Britain, CT, June 2012.  Note: extensive references. 

Geometric Mean, Weighted 
Like the unweighted geometric mean, the weighted geometric mean is best applied in the case when the 
data set exclusively involves values that are multiplicative in practice. In the unweighted case all values 
have equal influence over the final mean, but in the weighted case a set of weights (𝑝𝑖) are applied to the 
data. As a result, some observations will have a greater influence over the final mean than others. The 
weighted geometric mean for a set of observations 𝑎𝑖, and weights 𝑝𝑖 , for 𝐶 = 1, … ,𝑙 is 
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�̅� = ��𝑎𝑖
𝑟𝑖𝑊′

 

where 𝑘′ = ∑ 𝑝𝑖𝑖 . One application of the weighted geometric mean is finding the average growth rate 
between a set of growth rates across periods of different lengths. For example, a weight of 𝑝𝑖 = 6 would 
be applied to growth rates across a six-month period, while a weight of 𝑝𝑖 = 12 would be applied to 
growth rates across a year.  

http://en.wikipedia.org/wiki/Weighted_geometric_mean 

Harmonic Mean 
The harmonic mean is an average that is most appropriate when an average of rates is desired. As an 
example in cost estimating, the harmonic mean is commonly applied to inflation outlay rates or 
expenditure profiles. There are two variations of the harmonic mean: the unweighted harmonic mean and 
the weighted harmonic mean. The unweighted harmonic mean is commonly referred to as simply the 
“harmonic mean.” 

Wilson, Jim, “The Haarmonic Mean,” Mathematics Education EMAT 4600/6600, The University of 
Georgia.  Available at http://jwilson.coe.edu/EMT725/HM/HM.html. 

Harmonic Mean, Unweighted 
For a set of number 𝑎𝑖 (𝐶 = 1, … ,𝑙), the unweighted harmonic mean is calculated as 

�
1
𝑙
∙�

1
𝑎𝑖𝑖

�
−1

 

The relationship between the harmonic mean and arithmetic mean should be clear, and the harmonic 
mean can be remembered as “the reciprocal of the arithmetic mean of the reciprocals.” This average is 
most appropriate in those cases where the data set is an average of values defined in relation to some unit 
such as speed (miles/hour), or in the case of inflation, inflation indices representing a rate of change from 
one period to the next. 

van Belle, Gerald, Lloyd D. Fisher, Patrick J. Heagerty, Thomas Lumley, Biostatistics: A Methodology 
For the Health Sciences, Wiley & Sons, October 2004.  See section 10.5.3, page 396. 

Venderschel, David, PhD, “Why is harmonic mean used for speeds, not arithmetic mean?”, Rice 
University, October 2017.  Available at https://www.quora.com/Why-is-harmonic-mean-used-for-speeds-
not-arithmetic-mean. 

Harmonic Mean, Weighted 
Like the unweighted harmonic mean, the weighted harmonic mean is best applied in the case when the 
data set exclusively involves values that are defined in relation to a unit. In the unweighted case all values 
have equal influence over the final mean, but in the weighted case a set of weights (𝑝𝑖) are applied to the 
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data. As a result, some observations will have a greater influence over the final mean than others. The 

weighted harmonic mean for a set of observations, 𝑎𝑖, and weights 𝑝𝑖 , for 𝐶 = 1, … ,𝑙 is ∑ 𝑟𝑖𝑖

∑ 𝑤𝑖
𝑥𝑖
𝑖

.  

One application of the weighted harmonic mean is the averaging of inflation indices across multiple time 
periods of different length. In that case, each data point should be weighted by the length of the 
corresponding time period.  

Agrrawal, Pankaj, Richard Borgman, John M. Clark and Robert Strong, “Using the Price-to-Earnings 
Harmonic Mean to Improve Firm Valuation Estimates,” Journal of Financlal Education, Vol 36, No ¾, 
Fall/Winter 2010.  Abstract from these University of Maine and University of Missouri authors available 
at https://www.jstor.org/stable/41948650. 

Root Mean Square (RMS) 
RMS is a measure of the magnitude in varying values. It is calculated as the square root of the arithmetic 
mean of the square values of a data set. In other words, for a data set 𝑎𝑖 for 𝐶 = 1, . . ,𝑙 the RMS is 

𝑎𝑟𝑚𝑜 = ��1
𝑛
�∑ 𝑎𝑖2𝑖 . In cost estimating, this calculation of a mean is most common when performing 

regression and calculating the root-mean-square error of the predicted values.  

Weisstein, Eric W., “Root-Mean-Square,” from Mathworld, A Wolfram Web Resource.  Available at 
http://mathworld.wolfram.com/Root-Mean-Quare.html. 

Generalized Mean 
The generalized mean is defined such that all the other means described in this section are a special case 
of the generalized mean. Specifically, for observations 𝑎𝑖 for 𝐶 = 1, … ,𝑙, and some exponent 𝐴 ≠ 0 the 
generalized mean is defined as 

𝑀𝑝 = �
1
𝑙
�𝑎𝑖

𝑝

𝑖

�

1
𝑝

 

When 𝐴 = 0, 𝑀𝑝 = 𝑀0 = �∏𝑎𝑖
𝑛 , the geometric mean. Similarly, 𝐴 = 1 gives the arithmetic mean and 

𝐴 = −1 the harmonic mean. A weighted version of the generalized mean also exists.  

Sheldon, Neil, “The Generalized Mean,” Teaching Statistics, Vol 26, Issue 1, February 2004. 

Cumulative Average 
The cumulative average is also known as the cumulative moving average and is most relevant in time 
series data. For example, consider taking a daily reading of plant growth over the course of the summer. 
A moving average of that data might consist of the average of the 5 most recent days as opposed to an 
average of all the measurements until this point.  

In cost estimating, a common application of cumulative average is in the CUMAV method for CIC 
analysis. 
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Hyndman, Rob J., “Moving averages,” November 2009.  Available at 
https://robjhyndman.com/papers/movingaverage.pdf.   

A.3.1.2.2 Median 
The median is a measure of central tendency that is defined by the value that partitions the data set or 
distribution into two sets of equal size. For probability distributions, the median 𝑆 is the value such that 
there is a 0.5 probability the random variable will take on a value less than 𝑆. An equivalent definition of 
the median of a random variable 𝑋 is the value 𝑆 such that 𝐹𝑥(𝑆) = 0.5 where 𝐹𝑋 is the cumulative 
distribution function of the random variable 𝑋. 

For data sets, one must be careful in the calculation of the median. If there is an odd set of observations 
then the median is straightforward. For example, the data set 1, 2, 3, 4, 5 has a median of 3 as the set 1,2 
is the same size as the set 4,5. If there is an even set of observations however, such as the case 1, 2, 3, 4, 
5, 6, then the median may be unclear. Clearly the median must be equal to some number between 3 and 4 
in order to partition the data set into two equal subsets of size 3. There are an infinite number of values 
between 3 and 4, but convention holds that the average of the two “center-most” numbers be reported as 
the median. Thus, for the data set 1, 2, 3, 4, 5, 6, the median is 3.5. 

The definition and calculation and significance of the median are discussed on slides 14 and 15 in the 
Unit III section of CEBoK® Module 6 Basic Data Analysis Principles.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 111-113.    

A.3.1.2.3 Mode 
The mode is simply the most frequent value of the data set. For example, the data set 1, 2, 3, 4, 4, 4, 5, has 
a mode of 4. For distributions with pdf or pmf 𝐶𝑋 the mode is the value 𝑆 such that 𝐶𝑋(𝑆) ≥ 𝐶𝑋(𝑎) for 𝑎 
equal to all possible values of the random variable 𝑋. It should be noted that the mode of a data set or 
distribution is not necessarily unique. The pdf of a uniform distribution has constant value and so every 
value attainable by the random variable is the “mode.” Similarly, the data set 1, 1, 1, 6, 6, 6, has both 1 
and 6 as modes. In these cases, the mode is not well suited for describing a “typical” value of the data set 
or distribution, and a different measure of central tendency may be more useful. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 111-113.   

A.3.1.3 Measures of Dispersion 
In statistics, dispersion describes the amount of variation in a data set or among possible values for a 
random variable. One can also think of this as the amount of “spread” within the data or distribution. The 
most common measures are the standard deviation, variance, and CV described below (though other 
measures do exist). These are important in describing data or distributions since a measure of central 
tendency gives only a one-dimensional view of a data set or distribution. For example, the data set 1, 1, 1, 
1, 1, 1, 1 has the same mean, median and mode as the data set -10, -10, 1, 1, 1, 10, 10. 

https://robjhyndman.com/papers/movingaverage.pdf
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Measures of dispersion are of particular interest as they quantify (in part) the amount of uncertainty 
inherent in estimates.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 113-117. 

A.3.1.3.1 Standard Deviation 
The standard deviation of a data set is a measure of the amount of dispersion. Similarly, for a distribution, 
the standard error is a measure of the amount of spread between elements of a sample from the 
distribution. In either case, the standard deviation is calculated as the square root of the variance of the 
data, and is expressed in the same units as the data or random variable for which it is calculated. 

It is important to recognize the difference between the standard deviation of a population or a probability 
distribution, and the standard deviation of a sample data set from the population. In the case of a data set 
consisting of all members of a population, or of a probability distribution, full knowledge of the random 
variable is known. As a result, the calculation of the mean is not an estimate and can be used with 
complete confidence in its value. In the case of a data set sampled from the population, the mean is an 
estimate of the population mean. Commonly the letter 𝜎 is used to denote the population standard 
deviation which can be calculated from the population variance. The letter 𝑠 is used to denote the sample 
standard deviation and can be calculated from the sample variance.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 115-116. 

A.3.1.3.2 Variance 
The variance of a data set is a measure of dispersion. Similarly, for a distribution, the variance is a 
measure of the amount of spread between elements of a sample from the distribution. The calculation of 
variance for a random variable 𝑋 is 𝐸[(𝑋 − 𝐸[𝑋])2].  

When calculating the variance of a data set one must consider whether the data set is a population of data 
or a sample of data from the population. If the data set 𝑎𝑖  (𝐶 = 1, … ,𝑙) is the population of the data, then 

the calculation for the population variance is 𝜎2 = �1
𝑛
�∑ (𝑎𝑖 − �̅�)2𝑛

𝑖=1 , where �̅� is the arithmetic mean of 

the data set. For a sample data set 𝑎𝑖, 𝐶 = 1, … ,𝑙 the sample variance is calculated as 

𝑠2 = � 1
𝑛−1

�∑ (𝑎𝑖 − �̅�)2𝑛
𝑖=1 . Note that in the calculation for 𝑠2 the summation is divided by 𝑙 − 1 rather 

than 𝑙. This is because in a sample, the mean is only an estimate of the “true” mean, and as a result, one 
degree of freedom is lost in estimating the sample variance.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 115-116. 

A.3.1.3.3 Coefficient of Variation (CV) 
The coefficient of variation is a measure of the amount of spread within a distribution or data set. It is 
calculated as the ratio of the standard deviation divided by the mean, 𝐶𝐼 = 𝜎

𝜇
. The measure CV has an 

advantage over the variance and standard deviation as it is a unitless measure.  
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The variance is in squared units of a data set, and the standard deviation is in the same units of the data 
set. This does not allow for a comparison of standard deviation or variance between data sets due to the 
magnitude associated with these units. For example, the standard deviation in weight of 100 cars might be 
on the order of hundreds of pounds. Measuring that same standard deviation in tons would result in a 
much smaller measure of the standard deviation. However, the CV for both of these measurements is the 
same as the differences in magnitude would be “divided out” by the magnitude differences in the mean. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, page 116. 

A.3.1.3.4 Range 
The range of a data set or random variable is an easy to compute measure of dispersion. It is simply the 
smallest value in the data set (or attainable by the random variable), subtracted from the largest value. The 
range is also a somewhat primitive measure of dispersion as it ignores any measure of likelihood within 
the data. For example, the data set -10, 9, 9, 9, 9, 9, 10 has the same range as -10, -9, -9, -9 -9, 10. The 
range is still a useful measure for “well behaved data” and, like all other elements of descriptive statistics 
can be employed if it provides information representative of the data set.  

A.3.1.4 Outlier Analysis 
Outliers are simply portions of a data set that are “distant” from other elements in the data set. When 
considering a data set an examination of possible outliers is important. These outlying observations may 
have an undo effect on the analysis. For example, an outlier may inflate or deflate the calculation of the 
mean to the point where it is no longer representative of the data set. Additionally, the outlier may be the 
result of an error in data collection. Identifying that as an issue may help in identifying other issues with 
the data set that need to be addressed. 

There is no concrete definition of what constitutes an outlier, but there are a number of mechanisms for 
detecting observations that could be outliers. The simplest of which is a visual examination of a scatter 
plot for every variable and data point of the data set. Points on the scatter plot far removed from other 
points in the plot deserve, at the least, close consideration. More advanced statistical tests include 
Chauvenet's criterion, Grubbs' test, Peirce's criterion, Dixon's Q test and Mahalanobis distance. 

Once an outlier has been identified the first course of action should always be to examine and attempt to 
identify the cause of the outlier. Upon closer inspection one might find that the outlier is due to a result in 
data reporting or collection. Alternatively it could be that the outlier is simply due to chance. Remember, 
there is always a chance of recording an observation in the sample that is far from the population mean. 
Outliers are complicated even more when dealing with small data sets. It may be difficult to determine if 
a data point is representative of the larger population of data by comparing it to only a few other 
observations from the sample.  

There is no universally accepted definition for what constitutes an outlier and a cost estimator must use 
their own best judgment as to how these data elements should be handled. After identifying the cause of 
the outlier, one might decide to remove the points as it may unduly influence the calculations of the 
analysis. Alternatively, an analyst may decide that, while the values of the observation seem extreme, the 
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data point is a valid observation from the population of data and needs to be included. In either case, a 
discussion of outliers should be included in any documentation associated with the analysis.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 112, 148, 386, 414, 440. 

A.3.2 Inferential Statistics 

Inferential statistics is the branch of statistics focused on drawing conclusions from data associated with 
random variables. Descriptive statistics can be thought of as the “reporting” side of data collection and 
analysis. Inferential statistics can be thought of as the “analysis” side of data collection and analysis. A 
sound inferential analysis of data should have its foundation in an understanding of the data. As a result 
before an inferential statistics process is started, a set of descriptive statistics should be generated and 
examined for the raw data. 

Inferential statistics includes any method used to make conclusions beyond what is included in the data. 
This includes any analysis involving the relationships between variables in a data set, and forecasts about 
future observations. In cost estimating, inferential statistics examples include confidence tests for sample 
statistics, such as the level of certainty with which an analyst can calculate the average value of historical 
costs given a sample of those costs. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 196-236. 

A.3.2.1 Hypothesis Testing 
A hypothesis test is the formal statistical procedure used to test a specific scientific hypothesis about a 
population based on a data sample. A hypothesis can range from a claimed measurement in a formally 
designed experiment to an observed trend in a survey. In data analysis and CER construction, many of the 
hypotheses revolve around trends of the data (e.g., positive or negative slope), significance of a variable 
or model, or validation of some assumption (e.g., normality, constant variance, etc…).  

Hypothesis tests are expressed as a null hypothesis, denoted as 𝐻0. The null is the status quo argument, or 
hypothesis being tested by the scientific experiment. The null hypothesis is compared against a test 
statistic. If the value of the test statistic is unlikely to have occurred by random chance under some pre-
specified probability threshold, then the null is rejected in favor of the alternative hypothesis, denoted 𝐻1 
or 𝐻𝐴. Otherwise, the test fails to reject and the null hypothesis is retained. The conclusions drawn by 
hypothesis tests are conveyed using very careful language. A hypothesis test can never prove or accept a 
null hypothesis; it can only reject or fail to reject the null. 

In general, hypothesis tests can be broken out into two major groups: parametric and non-parametric. 
Parametric tests make a strict assumption on the distribution of the test statistic. If the assumption is true, 
the tests can be very powerful and support relatively low sample sizes. Non-parametric tests do not 
assume a distribution for the test statistic. While this makes the tests less restrictive, they are often less 
powerful and require larger sample sizes in order to reject the null hypothesis. 
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Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 196, 208-227. 

A.3.2.1.1 Type I and Type II Error 
Statistically, there are two types of errors that can occur when conducting a hypothesis test. 

A Type I error is the rejection of the null hypothesis in favor of the alternative, when in reality the null 
hypothesis is true. For example, consider the test of a cost driver, 𝑝𝐴𝐶𝑔ℎ𝐴. In a CER, the hypothesis test 
for significance of 𝑝𝐴𝐶𝑔ℎ𝐴 is expressed as, 

𝐻0:𝑝𝐴𝐶𝑔ℎ𝐴 = 0 
𝐻1:𝑝𝐴𝐶𝑔ℎ𝐴 ≠ 0 

If the sample data were to suggest the rejection of 𝐻0 in favor of the conclusion that 𝑝𝐴𝐶𝑔ℎ𝐴 is a 
significant driver (i.e., not equal to zero), but in reality 𝑝𝐴𝐶𝑔ℎ𝐴 has no impact on the theoretical model of 
the population, then a Type I error has been committed. Thus, an insignificant variable is incorrectly 
included in the CER model. 

A Type II error is the failure to reject the null hypothesis in favor of the alternative, when in reality the 
alternative hypothesis is true. Consider the same example as above regarding the cost driver 𝑝𝐴𝐶𝑔ℎ𝐴. If 
now the sample data were unable to reject 𝐻0 in favor of the conclusion that 𝑝𝐴𝐶𝑔ℎ𝐴 is a significant 
driver when it actually is, then a Type II error has been committed. Thus, a significant variable is 
incorrectly excluded from the CER model. 

In general, an error of Type I is considered to be more severe. The rate of a Type I error is denoted by 𝛼 
and is controlled by the scientist by setting 𝛼 at a predetermined level. This rate is theoretical, and the 
actual error rate may actually be (in cases, substantially) higher or lower. 

A Type II error is considered to be less severe and is not directly controlled. The rate of a Type II error is 
denoted by 𝛽 and can be tedious to calculate even in simple applications. This error rate is directly related 
to the concept of power. A test’s power is its ability to correctly reject a null hypothesis and is expressed 
as 1 − 𝛽. Besides changing the hypothesis test or one of the hypotheses, the scientist can only control the 
power of the model by changing the sample size, 𝑙. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 211, 228. 

A.3.2.1.2 Significance Levels 
When conducting a hypothesis test, a threshold value for the test statistic is specified beforehand. This is 
often done probabilistically on the p-value of the test statistic and is referred to as the 𝛼 level. If the p-
value of the test is below the declared significance level of the test, then the null hypothesis is rejected in 
favor of the alternative. In a CER, this has a direct impact on whether a model is declared statistically 
significant or not and whether or not a cost driver is included in the model. 

Selecting a significance level is an important part of CER construction. Selecting a cutoff too low (close 
to zero) can result in no predictors and no model being deemed statistically significant. The result would 
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be no model, which is often not an option. Raising the cutoff increases the likelihood of rejecting a null 
hypothesis, making it much easier to obtain statistically significant results. However, too high of an 𝛼 will 
result in an unacceptable Type I error rate (Appendix A.3.2.1.1) and false conclusions on models and the 
value of certain cost drivers. 

Traditional values for 𝛼 in regression models include 0.05, and 0.10. There are many different 
philosophies and no agreed upon value exists. The most critical rule is that whatever value is selected, it 
must be done prior to viewing the data and the test results. Selecting a significance value after the fact 
invalidates the analysis. 

Different fields of study, and different organizations within DoD, may have different guidelines and 
requirements on significance levels. In CER construction, datasets are often small in sample size. As a 
result, many models may be unable to achieve low (close to zero) significant levels. Even in these 
scenarios, a model is required. In this case, raising the significance level may be done, as long as cautions 
are well understood. 

A.3.2.1.3 Controlling Type I Error  
In an analysis, a significance level, 𝛼, is selected for individual hypothesis tests. When constructing a 
CER model, it is often the case that multiple variables are being tested under multiple simultaneous 
hypothesis tests. As a result, the actual Type I error rate is being compounded to a much higher rate. For 
example, this problem arises when creating confidence intervals for each parameter in the model. Suppose 
there are 20 predictors in a model, each with an 𝛼 level of 0.05. Since the Type I error rate is 1 in 20, it is 
expected that about one of these parameters has a confidence interval without the true parameter value 
being contained in it (with no way of knowing). 

There are many methodologies to adjust the overall error rate for multiple comparisons. A few of the most 
common ones include: 

• Fisher’s Least Significance Difference (LSD) 
• Bonferonni’s Correction 
• Tukey’s Method 
• Scheffé’s Method 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 227, 468, 469, 477-478, 491. 

A.3.2.2 Parametric Statistics/Tests 
Parametric statistics is a branch of inferential statistics that analyzes data based on an assumption of the 
underlying distributions from which the data has been sampled. For example, one might assume that 
annual maintenance costs for aircraft are normally distributed. Parametric statistics include a number of 
tests that can be applied to a sample of these maintenance costs provided the assumption regarding their 
normality is true.  

In the case where such an assumption cannot be made, non-parametric statistical methods provide an 
alternative set of analyses. However, if one can safely make certain assumptions about the underlying 
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processes of the data set, parametric statistical methods are much more straightforward and simpler than 
non-parametric methods. 

van der Vaart, A.W., Asymptotic Statistics. 

A.3.2.2.1 Pearson’s r 
Pearson’s r is analogous to correlation in probability. It is a measure of the linear correlation between two 
random variables, and is defined as the covariance between the variables divided by the product of the 
standard deviation for each variable. Like correlation, this measure is bounded by -1 and 1, with 1 
indicating a strong positive relationship between the variables, and -1 indicating a strong negative 
relationship between the variables. 

Pearson’s r, like correlation, is a measure of the linear relationship between variables. There are many 
other possible relationships besides linear relationships (see functional forms in Section 2.8) for which 
this measure is not appropriate in evaluating. 

van der Vaart, A.W., Asymptotic Statistics, page 242. 

A.3.2.2.2 t-test 
The t-test is a statistical hypothesis most commonly used to determine whether two sets of data are 
significantly different from one another (e.g., the mean of population 𝑋 is larger than the mean of 
population 𝑌), or if a value estimated from a set is significantly different from some constant value (e.g, 
the population mean is greater than 14). The primary assumptions of the test statistic is that the variables 
are normally distributed, and that the sample data being tested is an independent sample from the 
population. 

The t-test is extremely prevalent in statistics in that there are a number of variations to account for cases 
with sets of equal sizes, sets of unequal size, sets with equal variance, sets with unequal variance, and any 
combination of these. Additionally, the “one-tailed” test should be used when inequality is part of the 
hypothesis (e.g., the mean of 𝑋 is greater than the mean of 𝑌), and the “two-tailed” test should be used 
when the hypothesis involves equality (e.g., the mean of 𝑋 is equal to the mean of 𝑌). Analysts should be 
careful to apply the appropriate calculations when employing the t-test.  

In cost estimating the t-test is commonly encountered when considering the statistical significances within 
estimated parameters of a regression. There the hypothesis is usually that the coefficient is not equal to 
zero and a two-tailed test is conducted. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 210-211. 

A.3.2.2.3 F-test 
The F-test is a statistical test most often used in comparing statistical models. In cost estimating the F-
statistic is most commonly encountered in an ANOVA table or when validating the statistical significance 
of a regression model. 
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Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, page 287. 

A.3.2.2.4 Confidence Interval (CI) 
A confidence interval is a range set around a population estimate that helps indicate the reliability of the 
estimate. For example, values are sampled from a population and used to estimate the mean of the 
population. Since this is only an estimate, it is not absolutely certain that the population mean is the same. 
However, if the sample is assumed to be a representative (random) sample and then an interval can be 
defined around the sample mean such that, to some degree of confidence, the population mean lies within 
that interval. The more certain the actual value falls within the confidence interval, the larger the interval 
must be. Thus, any confidence interval consists of not only a range, but a level of certainty associated 
with the calculation of that range.  

There are a variety of ways to calculate a confidence interval and all are dependent upon the random 
variable being estimated, and the assumptions underlying the population and sample. The most common 
however include confidence intervals around an estimate of a population mean, and intervals around the 
estimates for parameters of a regression model.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 197, 203-208. 

A.3.2.2.5 Prediction Interval (PI) 
A prediction interval is a range that estimates, with a certain level of confidence, where a future 
observation will fall based on previous observations. Without prior knowledge of the population, there is 
no way to be absolutely certain of an interval for the next observation. For this reason, every prediction 
interval is calculated via an assumed level of confidence for the prediction. Higher levels of confidence 
are associated with wider prediction intervals.  

There are a variety of ways to calculate a prediction interval and all are dependent upon the underlying 
assumptions regarding the underlying population from which the next observation is assumed to come. As 
prediction intervals are forecasts regarding events that have yet to occur, a prediction interval for a given 
confidence level is always larger than the confidence interval for the same level of confidence. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 257-258, 362, 386, 412. 

A.3.2.2.6 Durbin-Watson Test 
The Durbin-Watson test is the most widely used test to test for autocorrelation of the residuals. It tests the 
null hypothesis that the correlation between a given residual and the one preceding it is zero. Thus, a p-
value for the test less than the pre-specified 𝛼 would result in a rejection of the assumption of 
independence of errors. The test is most useful in time series application and is very popular in the field of 
Economics.  

Montgomery, D.C., E.A. Peck, and G.C. Vining, Introduction to Linear Regression Analysis (Third 
Edition), Wiley & Sons, 2001. 
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The White test is a popular test in economics for heteroscedasticity of the errors. The test takes the 
approach of conducting a regression on the squared residuals of the model based on the original predictors 
and the comprehensive set of second-order combinations. That is, the squared predictors and all of their 
combinations. The 𝑅2 of the resulting regression is part of the resulting test statistic, testing the null 
hypothesis that the errors are constant. Thus, a p-value for the test less than the pre-specified 𝛼 would 
result in a rejection of the assumption of homoscedasticity of errors. 

White, H., “A heteroscedasticity Consistent Covariance Matrix Estimator and a Direct Test of 
Heteroscedasticity,” Econometrica, Vol 48, pp. 817-818, 1980. 

A.3.2.2.7 Breusch-Pagan Test 
The Breusch-Pagan (BP) test is an alternative to the White test, again taking a strategy of employing a 
regression on the residuals. This test relies on the normality assumption by use of the F-test. If the linear 
regression line drawn through the residuals has all of its parameters statistically significant, then the BP 
test rejects the assumption of homoscedasticity of errors. 

Pardoe, Dr. Iain, Dr. Laura Simon, and Dr. Derek Young, “STAT 501/Regression Methods,” Eberly 
College of Science, Pennsylvania State University, 2018.  See section 7.  Available at 
https://onlinescourses.science.psa.edu/stat501. 

A.3.2.2.8 Anderson-Darling Test 
The Anderson-Darling test is a statistical test of whether a given sample of data are drawn from a given 
probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in 
the distribution being tested, in which case the test and its set of critical values is distribution-free. 
However, the test is most often used in contexts where a family of distributions is being tested, in which 
case the parameters of that family need to be estimated and account must be taken of this in adjusting 
either the test-statistic or its critical values. The test can be applied to a variety of probability 
distributions, but its most common application is in normality testing. When applied to testing if a normal 
distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting 
most departures from normality. Because this is the most common application in cost estimating, it is 
placed under Parametric Statistics, but in the former case it would fall under the following Non-
parametric Statistics section, like the Chi-square and Kolmogorov-Smirnov (KS) tests, which also involve 
the empirical distribution function (EDF). 

Natrella, Mary, Carroll Croarkin, and many others, NIST/SEMATECH e-Handbook of Statistical 
Methods, National Institute of Standards and Technology (NIST) and SEMATECH consortium, updated 
October 2013.  Availiable at http://www.itl.nist.gov/div898/handbook/index.htm.  See section 1.3.5.14. 

A.3.2.2.9 Shapiro-Wilk 
The Shapiro-Wilk test is specifically for normality and tests the assumption that the data are from a 
normal distribution. The test statistic calculates weighted deviations of the sample data from the normal 
distribution. The test has been proven to perform very well in comparison to the other normality tests and 
is often favored by analysts. The SW statistic tests the same null hypothesis that the data does follow the 

http://www.itl.nist.gov/div898/handbook/index.htm


 CER Development Handbook 
 

218 

distribution of interest (i.e., normal). Thus, a p-value for the test less than the pre-specified 𝛼 would result 
in a rejection of the assumption of normality of errors. 

Natrella, Mary, Carroll Croarkin, and many others, NIST/SEMATECH e-Handbook of Statistical 
Methods, National Institute of Standards and Technology (NIST) and SEMATECH consortium, updated 
October 2013.  Availiable at http://www.itl.nist.gov/div898/handbook/index.htm.  See section 7.2.1.3. 

A.3.2.2.10 Cook’s Distance 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, page 456. 

A.3.2.2.11 Akaike Information Criterion (AIC) 

Joint Cost and Schedule Risk and Uncertainty Handbook (CSRUH), 16 September 2014, Appendix 
A.9.6, https://www.ncca.navy.mil/tools/csruh/index.cfm 

Akaike, H., “Akaike’s Information Criterion,” In: Lovric M. (eds), International Encyclopedia of 
Statistical Science, Springer-Verlag, Berlin Heidelberg, 2011. 

Hu, Shuhua, “Akaike Information Criterion,” Center for Research in Scientific Computation, North 
Carolina State University, Raleigh, NC, February 2012.  Available at 
http://www4.ncsu.edu/~shu3/Presentation/AIC_2012.pdf. 

A.3.2.2.12 Bayesian Information Criterion (BIC) 

Joint Cost and Schedule Risk and Uncertainty Handbook (CSRUH), 16 September 2014, Appendix 
A.9.7, https://www.ncca.navy.mil/tools/csruh/index.cfm 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 646-650. 

A.3.2.3 Non-parametric Statistics/Tests 
Non-parametric statistics is a branch of inferential statistics focused on the analysis of data without 
assuming an underlying distribution from which the data has been sampled. For example, if a certain type 
of data are collected for the first time, there may be no historical basis for assuming a theoretical 
distribution for the data.  

Parametric statistical methods are based on assumptions that non-parametric methods avoid. For this 
reason, non-parametric methods are generally simpler and more robust in that those assumptions need not 
be tested nor valid for the results to hold. The downside however, is that for the same level of confidence, 
a non-parametric method usually needs more observations than the parametric methods. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate. 

http://www.itl.nist.gov/div898/handbook/index.htm
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A.3.2.3.1 Spearman’s Rho 
Spearman’s rank correlation coefficient, also known as Spearman’s Rho (𝜌) is a test that measures the 
level of statistical dependence between two random variables74. It is similar to correlation in that it is 
bounded between -1 and 1. In the cases where there are no repeated observations, a value of 𝜌 = 1 
implies perfect positive dependence and 𝜌 = −1 implies perfect inverse dependence. With data sets 
containing repeated values, the calculations and interpretations differ slightly. Unlike Pearson’s 𝐴, 
Spearman’s Rho does not assume a strictly linear relationship. Instead, it only assumes that the 
relationship between the two variables can be described as a monotonic function (either never decreasing 
for positive dependence between variables, or never increasing for negative dependence between 
variables). 

Conover, W.J., Practical Nonparametric Statistics (Third Edition), Wiley & Sons, 1999. Section 5.4 
“Measures of Rank Correlation.” See pp. 314-319 for a specific discussion of Spearman’s Rho 

http://www.unesco.org/webworld/idams/advguide/Chapt4_2.htm  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 586-589, 604. 

A.3.2.3.2 Kendall’s Tau 
The Kendall rank correlation coefficient, or “Kendall’s Tau,” measures the correlation of rank between 
two variables within a data set. The observed values for the variables are ranked independently of each 
other, and those rankings are compared to a ranking of the variables as they were collected in the original 
data. Like correlation, the resultant calculation is bounded between -1 and 1, with a value of 1 or -1 
indicating a perfect relationship, or perfect inverse relationship respectively. 

Conover, W.J., Practical Nonparametric Statistics (3rd ed.). Wiley (1999). Section 5.4 “Measures of Rank 
Correlation.” See pp. 319-323 for a specific discussion of Kendall’s Tau. 

http://www.unesco.org/webworld/idams/advguide/Chapt4_2.htm 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 589-592, 604. 

A.3.2.3.3 Runs Test 
The Runs test is a nonparametric test to determine if the sequence of data are random. The test looks at 
the sign (+ or -) of each residual and attempts to detect if there is a pattern to their occurrences. It tests the 
null hypothesis that the positive and negative elements appear at random. Thus, a p-value for the test less 

                                                      

74 For a specific discussion of Spearman’s Rho, see:.Conover, W.J., Practical Nonparametric Statistics (3rd ed.). 
Wiley (1999). Section 5.4 “Measures of Rank Correlation.” See pp. 314-319  
http://www.unesco.org/webworld/idams/advguide/Chapt4_2.htm 

http://www.unesco.org/webworld/idams/advguide/Chapt4_2.htm
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than the pre-specified 𝛼 would result in a rejection of the assumption of independence of errors. The test 
is most useful in time series application. 

Natrella, Mary, Carroll Croarkin, and many others, NIST/SEMATECH e-Handbook of Statistical 
Methods, National Institute of Standards and Technology (NIST) and SEMATECH consortium, updated 
October 2013.  Availiable at http://www.itl.nist.gov/div898/handbook/index.htm.  See section 1.3.5.13. 

A.3.2.3.4 Wilcoxon Two-Sample Test 
The Wilcoxon Two-sample test, also called the Mann-Whitney U test, is a non-parametric test for 
whether two populations are statistically significantly different from one another. The test is especially 
useful when only ordinal information about the data set is available. It differs from student’s t-test in that 
it does not assume a normal distribution for the underlying populations and can be applied more widely 
(such as to ordinal data).  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 575-579, 596, 603. 

A.3.2.3.5 Kruskal-Wallis Test 
The Kruskal-Wallis test is used for determining whether two samples come from the same distribution, 
and can also be used in testing the independence of more than two variables. It is a non-parametric 
equivalent of an ANOVA test (specifically the “one-way” ANOVA). Unlike the ANOVA test, it does not 
assume that the samples are from a normal distribution.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 581-582, 603-604. 

A.3.2.3.6 Wilcoxon Test 
The Wilcoxon test is used to compare two related samples to determine if the population means calculated 
from those samples are statistically significantly different. It is a non-parametirc version of the paired t-
test. It differs from the paired t-test in that it does not assume the populations are normally distributed, 
and it can be applied to ordinal data.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 568-573. 

A.3.2.3.7 Friedman’s Test 
Friedman’s test is a non-parametric test used to detect differences in evaluation across multiple 
measurements. Commonly this is used to detect differences between “blocks” of a designed experiment. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 583, 584-585, 604.   

http://www.itl.nist.gov/div898/handbook/index.htm
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A.3.2.3.8 Chi-square test 
Pearson’s chi-squared test, frequently referred to as simply “Chi-squared test,” tests for the goodness of 
fit between observed data and some theoretical distribution, or if observations from a sample are 
statistically independent.  

In cost estimating, the Chi-Squared test is most frequently used in validating the assumptions of the 
regression model, such as normality of the residuals. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, page 318. 

A.3.2.3.9 Kolmogorov-Smirnov (KS) 
The Kolmogorov-Smirnov test, or “KS test,” is a test to determine if two continuous probability 
distributions are statistically significantly different. The one-sample test compares observed data to a 
theoretical distribution, such as comparing a set of sample values to the normal distribution. The two-
sample test is used in comparing the distributions of two sets of observed data. 

In cost estimating it is commonly used to compare the residuals of a regression analysis to the normal 
distribution in a test of the normality assumption. 

van der Vaart, A.W., Asymptotic Statistics, page 290. 

A.3.3 Data Analysis Challenges 

There are a number of challenges commonly encountered by cost estimators. These include small data 
sets, data sets with missing or incomplete information, and the presence and influence of extreme 
observations. In all of these cases, the best course of action is to first attempt to remedy the problem if 
possible. That includes collecting more data, finding the information missing from the collected data set, 
and determining the cause of the unusual observations, respectively. As it is not always possible to correct 
such errors, it is important to understand the implications and proceed with the analysis under caution. 

A.3.3.1 Small Data Sets 
Small data sets make it difficult to form conclusions about the population from which the data were 
sampled. Additionally, these conclusions are difficult to test due to the effect of small sample sizes on test 
statistics. There are some benefits to small data sets. First, with small data sets all of the data are easily 
comprehended. All relevant information about a data set with five points can be easily conveyed with 
scatter plots and a few descriptive statistics. 

Cost analysts are often expected to “make do” with small data sets. As a possible remedy, the analyst 
should consider combining the current data set with a second one to produce a larger data set. In doing so, 
the analyst must consider whether the two data sets are similar enough with respect to the goals of the 
analysis. For example, the analyst might combine a small data set of components from one submarine 
class with a similar data set from a different submarine class. If the element of cost being estimated is 
similar enough between the submarine classes, then combining them makes sense. Otherwise, the 
additional data may be more harmful than helpful by skewing the results. 



 CER Development Handbook 
 

222 

What constitutes a “small” data set is very application specific. Some fields of study are used to years of 
repeated observations, and a sample size of 𝑙 = 100 may be considered miniscule. In others, an event 
may be so rare in occurrence that 𝑙 = 2 is considered quite good. However, despite what may be a 
“good” sample based on scarcity of data, small sample sizes can have large statistical implications. With 
small samples, variances tend to be large and thus produce wide confidence and prediction intervals. 
Larger variances also make it more difficult to determine statistical significance of results. 

Collins, Justin, Jordan Brown, Christine Schammel, PhD, Kevin Hutson, PhD, and W. Jeffery Edenfield, 
MD, “Meaningful Analysis of Small Data Sets: A Clinician’s Guide,” Greenville Health System (GHS) 
Proc., June 2017; 2(1); pages 16-19.  Authors from GHS Institute for Translational Oncology Research, 
Pathology Consultants, and Furman University Deprtment of Mathematics.  Available at 
http://hsc.ghs.org/wp-content/uploads/2016/11/GHS-Proc-Finding-Meaning-In-Small-Data-Sets.pdf. 

Seibert, Carl F., and Sarcy Clay Siebert, Data Analysis with Small Samples and Non-Normal Data: 
Nonparametrics and Other Strategies,  Oxford University Press, 2018. 

A.3.3.1.1 Small Data Sets – Degrees of Freedom 
Closely tied to the sample size is the number of degrees of freedom for the model (i.e., 𝐷𝐹𝑒𝑟𝑟𝑒𝑟). With 2, 
3, or 4 observations, a simple linear CER with a slope and intercept term has 0, 1, or 2 degrees of 
freedom, respectively. This may be insufficient in conducting statistical inference. 

To “save” a degree of freedom, different approaches have been taken. The simplest solution is to drop a 
parameter from the model. For example, dropping the intercept term from the equation results in the 
Factor CER, and one additional degree of freedom. When multiple predictors are being used, one (or 
more) may be dropped from the equation. Despite desires to retain these parameters in the model, the 
statistics may simply make it infeasible. 

Another approach is to “fix” a coefficient to a precise value. This practice is discussed in detail in Section 
3.4.3 Pseudo-Exact Prior Information on Parameter Values. 

The LASSO method is a modern regression methodology capable of fitting models with more parameters 
than observations (Appendix A.4.9.5 LASSO and the Elastic Net). 

As the number of parameters approaches the sample size (i.e., low degrees of freedom), the model can 
suffer from overfitting. This results in a great model fit, but with poor prediction abilities. 

Smith, Martha K., “Common Misteaks Mistakes in Using Statistics: Spotting and Avoiding Them,” 
University of Texas at Austin, June 2014.  Available at 
https://www.ma.utexas.edu/users/mks/statmistakes/overfitting.htm. 

 

Draper, Norman R. and Smith, Harry, Applied Regression Analysis (Third Edition), John Wiley & Sons, 
Inc., 1998. 

http://hsc.ghs.org/wp-content/uploads/2016/11/GHS-Proc-Finding-Meaning-In-Small-Data-Sets.pdf
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A.3.3.1.2 Small Data Sets – Asymptotic Results 
Further complicating the problem is the case of asymptotic results, such as with Section 3.3.5 Non-linear 
Least Squares (NLS). These models make use of properties that are accurate with large sample sizes. 
Defining a large sample size is difficult; it depends on many factors such as the variance of the sample 
and the complexity of the model. Some problems may behave well with 𝑙 = 30, while others may require 
larger samples such as 𝑙 = 100. However, almost surely results with 𝑙 < 10, as is common in cost 
analysis, will be insufficiently small. 

In many cases, use of these methods is for lack of better options. The small sample size is just a fact of 
life, and the analyst may proceed to use the analysis under caution, understanding that prediction intervals 
and statistical significance may be inaccurate. In particular, the interval may not cover the true value at 
the assumed significance level (𝛼), and the F-test and t-tests may have Type I error rates (see Appendix 
A.3.2.1.1 Type I and Type II Error) different from the assumed significance level (𝛼). 

A.3.3.1.3 Small Data Sets – Bootstrap 
The bootstrap method (Appendix A.4.7.4 Bootstrap, A.4.8.2 GERM Uncertainty (Bootstrapping)) is an 
alternative to relying on asymptotic statistics. Implementation requires iterative resampling from the data 
set sample and deriving the appropriate statistics from each sample. Studies have shown strong 
performance for these methodologies. 

http://ocw.mit.edu/courses/sloan-school-of-management/15-450-analytics-of-finance-fall-2010/lecture-
notes/MIT15_450F10_lec09.pdf 

Book, Stephen A., “Prediction Bounds for General-Error-Regression Cost-Estimating Relationships,” 
Journal of Cost Analysis and Parametrics (JCAP), Vol 5 No 1, 2012. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 597-601. 

A.3.3.1.4 Small Data Sets – Bayesian Analysis 
Another way to work with small sample sizes is to use Bayesian statistical methods. Bayesian methods do 
not make use of degrees of freedom and are thus not constrained by their limitations. Under the classical, 
or “frequentist,” framework, the regression coefficients are unknown, fixed values. The Bayesian 
paradigm views these coefficients as unknown, random values. As a result, these analyses rely on prior 
distributions on the parameters, either informative (e.g., 𝛽1 > 0), or uninformative (e.g., −∞ < 𝛽1 < ∞), 
weighted against the data. Bayesian analysis comprises advanced methods that are difficult to implement 
from a statistical perspective. However, their results are based on probabilities and can be very intuitive to 
understand. 

Smart, Christian, PhD., “Bayesian Parametrics: How to Develop a CER with Limited Data and Even 
Without Data”, ICEAA Professional Development & Training Workshop, Denver, 9-13 June 2014. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 646-650. 
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A.3.3.2 Missing Data 
In statistics, missing data refers to an observation for which there is no data recorded for one or more of 
the variables. There are a number of technical approaches to the topic of missing data. However, in cost 
estimating, the term missing data are usually meant more generally to describe data that has not been 
recorded, is not available to the analyst, or has been provided but is known to be inaccurate.  

In some cases, cost analysis provides a mechanism for dealing with missing data. For example, in CIC 
analysis, calculations on lot production costs can provide insight when unit level data are not available. 

Soley-Bori, Marina, “Dealing with missing data: Key assumptions and methods for applied analysis,” 
Technical Report No. 4, Boston University School of Public Health, Department of Health Policy & 
Management, May 2013.  Available at 
https://pdfs.semanticscholar.org/5691/e4052ddc076059184c9d055c30211ba815b1.pdf. 

There is a wealth of information regarding the identification of extreme observations (outliers) and 
assessing their impact on the analysis. For the cost analyst usually faced with small data sets, the 
evaluation of whether to include or remove an extreme data point is not always clear. Identifying an 
extreme point does not imply that the point should be removed. It only implies that the point is in need of 
further investigation. If it is found that the data point was recorded improperly, or that there is some 
fundamental difference between the point and others in the data set (other than the value of the data 
point), then the removal of that point may be appropriate. However, if by all other measure, the point is a 
valid element of the data set then it should be included. Extreme observations can be beneficial in data 
analysis. Specifically, they can be used to form bounds necessary for risk and sensitivity analysis.  

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 112, 148, 386, 414, 440. 

A.3.4 Data Mining 

Data mining is the process of identifying patterns in large data sets. It contrasts traditional statistical 
analysis where the process is to formulate a hypothesis and collect data separately, and then evaluate the 
hypothesis by examining the data. In data mining, the data are “mined” for conclusions with the intention 
of extracting data in an understandable way. It should be noted that “data mining” is a bit of a “buzzword” 
that encompasses numerous methods previously developed and more general terms such as “large scale 
data analysis” are more relevant.  

Hand, Mannila, and Smyth, Principles of Data Mining, Massachusetts Institute of Technology Press, 
Cambridge. MA, 2001.  ISBN 026208290X. 

Berry and Linoff, Mastering Data Mining, Wiley & Sons, 2000.  ISBN 0471331236. 

Delmater and Hancock, Data Mining Explained, Digital Press, 2001.  ISBN 1555582311. 
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A.4 Regression Analysis 
A.4.1 Ordinary Least Squares (OLS) 

The coefficients for OLS can be calculated from a formula. For the single predictor case, 

�̂�1 = �
(𝑎𝑖 − �̅�)(𝑦𝑖 − 𝑦�)

(𝑎𝑖 − �̅�)2

𝑛

𝑖=1

 

�̂�0 = 𝑦� − �̅��̂�1 

And, 

𝜎�2 =
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1
𝑙 − 2

 

In matrix notation, useful for the multiple predictor (as well as the single predictor) case, 

𝑿� = (𝑿′𝑿)−1𝑿′𝒚 

And, 

𝜎�2 =
𝒚′(𝐼 − 𝑿(𝑿′𝑿)−1𝑿′)𝒚

𝑙 − (𝑘 + 1)
 

A.4.2 Generalized Least Squares (GLS) 

The coefficients for GLS can be solved for with a formula. In matrix notation, useful for the multiple 
predictor (as well as the single predictor) case, 

𝑿� = (𝑿′𝚺−1𝑿)−1𝑿′𝚺−1𝒚 

And, 

𝜎�2 =
𝒚′(𝚺−1 − 𝚺−1𝑿(𝑿′𝚺−1𝑿)−1𝑿′𝚺−1)𝒚

𝑙 − (𝑘 + 1)
 

A.4.3 Log-Linear Regression 

A.4.3.1 Mean Shift 
A.4.3.1.1 Goldberger Factor 

In log space the standard log-linear regression equation with multiplicative error is 𝒚 =  𝛽0𝒙𝛽1 ∙ 𝐴𝜺, and 
after transformation to unit scale the equation is ln𝒚  =  ln𝛽0 + 𝛽1 ln𝒙 + 𝜺. Then using the substitutions 
𝒚∗ = ln 𝒚, 𝒙∗ = ln𝒙, and 𝑿0∗ = ln𝑿0 yields a standard OLS equation 𝒚∗ = 𝛽0∗ + 𝛽1𝒙∗ + 𝜺. Thus, the 
values of 𝛽0∗ and 𝛽1 can be estimated via ordinary least squares and then transformed to derive the values 
for 𝛽0, 𝒙, and 𝒚 in the log space equation. For example, 𝛽0∗ = ln𝛽0 implies that 𝛽0 = 𝐴𝛽0∗ . Unfortunately, 
transforming the OLS estimate of log space yields a biased estimate of the parameter 𝛽0.  
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In (Goldberger 1968) the author demonstrated that the process above for a log-linear equation with 
multiplicative error term yields a biased estimate for the parameter 𝛽0. Fortunately, the other parameter 
estimate 𝛽1 is still unbiased. Goldberger provides an equation for estimating the term 𝑎 that is unbiased 
(as well as being minimum-variance). This equation, is shown below and its derivation can be found in 
(Goldberger 1968). The unbiased estimator of 𝛽0 is equal to 𝐴𝛽0∗𝐹 where: 

𝐹 = �
𝐶𝑗(𝐶𝑝)𝑗

𝑗!

∞

𝑗=0

, 

And, 

𝐶 = 0.5𝑆 where 𝑆 is the unscaled variance of the estimate for 𝛽0 
𝑝 = 𝑠2 where 𝑠 is the residual variance from least squares estimation 

𝐶𝑗 =
(0.5𝐼)𝑗Γ(0.5𝐼)
Γ(0.5𝐼 + 𝑗)

 where 𝐼 = 𝑙 − 𝑘 − 1 degress of freedom and 𝛤 is the Gamma function 

Γ(𝐴) = � 𝑎𝑡−1𝐴−𝑥𝐶𝑎
∞

0
 

It should be noted that this is a theoretical calculation for the value of 𝐹. The denominator 𝑗! grows 
rapidly and so the equation for 𝐹 quickly converges in 𝑗. In practice, the summation of terms is usually 
only taken out to 𝑗 = 4 or 5.  

Goldberger, Arthur S., “The Interpretation and Estimation of Cobb-Douglas Functions,” Econometrica, 
Vol 35, 1968, pp. 464-472. 

A.4.3.1.2 PING Factor 

Hu, Dr. Shu-Ping, “The Impact of Using Log-Error CERs Outside the Data Range and PING Factor,” 5th 
Joint Annual ISPA/SCEA Conference, Broomfield, CO, 14-17 June 2005. 

A.4.3.2 Unbiased 
The Gauss-Markov Theorem states that in the classical linear regression model, the least squares 
estimator is the minimum variance linear unbiased estimator of the coefficient. An unbiased estimator has 
an expected value for its sample distribution that reflects the value of the population parameter. If many 
samples of size n are drawn from the overall population, the resulting coefficients would generally reflect 
the true value of the coefficient based on the full population. By contrast, a biased estimator does not 
reflect the true value of the coefficient based on the full population. 

The property of unbiasedness holds true in the numerical scale in which OLS regression is done. If a log-
linear transform is used to linearize a functional form, bias is introduced by the act of conversion to unit 
space, as described in Section 5.1, though the median of the distribution remains unbiased in this 
conversion. Restricted Least Squares regression results in unbiased coefficients as long as the restriction 
holds true in the population (which is usually not the case in practice). In the case of ridge regression, the 
estimated coefficient is biased by the mechanical perturbation introduced with this process. 
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OLS also has properties that hold in very large sample sizes. A large sample property of OLS is that it is 
consistent. A consistent estimator has a sampling distribution that converges to the true population 
parameter as n approaches infinity. 

Note "unbiased" refers to a property of the mean of the sampling distribution for the estimator, whereas 
consistency refers to the convergence of the sample distribution to the true population parameter as n 
approaches infinity. 

Omitting key driving variables in the hypothesized model may result in both biased and inconsistent 
estimators of the remaining variables. This is why a good, well thought out hypothesis tied to the 
underlying process being modeled is more important than randomly fitting models solely on the basis of 
the best statistical fit. 

A.4.4 Generalized Linear Model (GLM) 

A.4.4.1 Generate GLM CER 
Methods of least squares, such as 3.3.1 Ordinary Least Squares (OLS) and 3.3.2 Generalized Least 
Squares (GLS) can be fairly restrictive in the sense that they depend on a symmetrical error distribution 
and operate by minimizing the sum of squared errors of the model. A Generalized Linear Model (GLM) is 
a generalization of the standard linear model allowing for non-normal error distributions, such as 
lognormal (see Section 4.2.1.4 Normality of Errors), and limited non-linear function forms (see Section 
4.2.1.5 Linearity), such as the 2.8.2 Power Functional Form and 2.8.3 Exponential Functional Form. Of 
particular interest to CER construction, GLM provides the flexibility to directly fit a lognormal error term 
(or approximation of) and power and exponential models without having to first transform the data. 

Appendix B Maximum likelihood estimation for Regression of Log Normal error (MRLN) Summary 
provides an overview on a variation of this method. 

GLM expresses a response whose mean is a function of a linear predictor, and an additive error term that 
follows a distribution belonging to the exponential family (Appendix A.2.2.3). The model has many 
convenient properties analogous to those of OLS, but with added complexities. To accommodate non-
normal error distributions, GLM utilizes Maximum Likelihood Estimation (MLE) (Appendix A.4.7.2). 
The error distribution assumption provides a systematic framework to conduct inference and to determine 
significance of the results. The parameters may have practical, meaningful values, depending on the 
specific form of the model. However, the coefficient estimates typically do not have a closed-form 
solution. Solving for the coefficients by maximizing the likelihood function of the model requires an 
algorithm and many software packages are able to accommodate the GLM without a problem. 
Additionally, under certain conditions, statistical inference properties of the GLM are preferable to those 
of both the 3.3.3 Log-Linear model and more generalized 3.3.5 Non-linear Least Squares (NLS) forms.  

There are several common specific applications of GLM used to solve specialized regression problems. 
Binary response variables are predicted using logistic regression. Count data are often modeled using 
Poisson regression. While beyond the scope of this guide, both are common enough to be aware. 

van der Vaart, A.W., Asymptotic Statistics,, page 234. 
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A.4.4.2 GLM Model 
Below is the general statistical formulation of the GLM model. This generalization is valid for any error 
distribution that is a member of the exponential family, which includes the normal and lognormal 
distributions. In addition, the selection of the link function is flexible. The link function, 𝑔, is the 
relationship between the mean, or expected value, of the response (denoted 𝐸[𝒚]) to the linear predictor. 
Many different forms of the GLM exist, but most applicable to cost may be those with either normal or 
lognormal error, and a log link function. The first part of the statement expresses that the response 
variable, or vector, 𝒚, is equal to a function of the matrix of linear predictors, 𝑿, multiplied by the 
coefficient variables, or vector, 𝑿, plus some random error, 𝜺. The second part of the statement indicates 
the assumption that the errors are all independently and identically distributed according to some 
exponential family distribution specified by some set of parameters, 𝜽. 

Since a function of the response is linear with respect to the predictors, 𝑔(𝒚) = 𝑿𝑿 and, 

𝒚 = 𝑔−1(𝑿𝑿) + 𝜺 where 𝜺 ~ 𝐸𝑎𝐴 𝐹𝑎𝑆𝐶𝑙𝑦(𝜽) 

The GLM supports specification of the variance as well, done as some function ℎ(𝑎) of the mean, 

𝐸[𝑦] = 𝑔−1(𝑿𝑿) 
𝑉𝑎𝐴[𝑦] = ℎ(𝐸[𝑦]) 

= ℎ(𝑔−1(𝑿𝑿)) 

Unlike the link function for the mean, the model does not require a specification of the variance. It can be 
taken to be the identity, ℎ(𝑎) = 𝑰, which is an assumption of constant variance. However, the formulation 
as a function of the mean does lend itself well towards fitting multiplicative type error.  

Suppose, 

𝑔(𝑎) = 𝑎 and 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

These conditions satisfy the requirement that the error is distributed according to the exponential family 
and specifies the identity as the link function. The GLM model now becomes, 

𝒚 = 𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

This special case looks identical to OLS and has a closed-form solution. In fact, these coefficient 
estimates are the same as those generated by OLS, and thus the least squares and maximum likelihood 
estimates of the coefficients of the linear model with the normality assumption are equivalent. 

Now suppose, 

𝑔(𝑎) = ln (𝑎) and 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 

Thus, 𝑔−1(𝑎) = 𝐴𝑥, and again, the error satisfies the requirement of GLM. The GLM model now is, 

𝒚 = 𝐴𝑿𝑿 + 𝜺 where 𝜺 ~ 𝑁(𝟎,𝜎2𝑰) 
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This is an example of a non-linear form fit by a GLM. GLM is transforming the mean of the response in 
order to fit the estimate. The same model fit with Log-Linear regression transforms each individual 
response in order to fit the estimate. As a result, GLM fits directly in the unit space, and no messy 
transformations or factors are required to interpret the results. While the form does not appear to resemble 
either the Power Functional Form or Exponential Functional Form introduced in Section 2.8, some 
algebraic manipulation can show that the forms are in fact equivalent. Consider the simple case with one 
independent variable, 

𝐸[𝑦] = 𝐴𝑿𝑿 
= 𝐴𝛽0+𝛽1𝒙 
= 𝐴𝛽0 ∙ 𝐴𝛽1𝒙 
= 𝛽0′ ∙ 𝐴𝛽1𝒙 

And,𝛽0′ = e𝛽0 

This form represents the exponential model. Now consider the same simple case but with a log transform 
applied to 𝒙, 

𝐸[𝑦] = 𝐴𝑿𝑿 
= 𝐴𝛽0+𝛽1 ln(𝒙) 
= 𝐴𝛽0 ∙ 𝐴𝛽1 ln(𝒙) 
= 𝐴𝛽0 ∙ 𝐴ln�𝒙𝛽1� 
= 𝛽0′ ∙ 𝒙𝛽1 

And,𝛽0′ = e𝛽0 

This form represents the power model. 

The statement of the model explicitly states the assumptions made when conducting GLM. These are 
analogous to the four OLS assumptions: 

(1) Independence of errors. The errors, 𝜺, follow an exponential family distribution specified such 
that no covariance exists between the errors of each observation. 

(2) Variance Specification. The errors, 𝜺, come from the function specified by ℎ(𝑔−1(𝑿𝑿)). 
(3) Distributional Assumption. The error term follows the specified exponential family distribution. 
(4) Linearity in the Parameter Space. The relationship between the predictors, 𝑿, and the parameters, 

𝑿, is linear with the correct link function, 𝑔−1(𝑿𝑿). 

Under these assumptions, the results of GLM are asymptotic (Appendix A.3.3.1.2 Small Data Sets – 
Asymptotic Results), meaning that the coefficients are optimal in large samples. To fit this regression 
model by method of maximum likelihood, find values for the coefficient vector 𝑿 that maximize the 
objective function. The objective function is dependent on the distributional assumption, and is essentially 
the likelihood function of the specified distribution’s parameters,𝜽, dependent on the known data, 𝑿 and 
𝒚. Its generic expression is, 
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arg max
𝑿

𝐿(𝜽|𝑿,𝒚) 

A.4.4.3 GLM Application 
GLM is a less convenient model because the problem rarely has a closed-form solution. The Iteratively 
Reweighted Least Squares (IRLS) (Appendix A.4.7.1) technique was developed specifically to solve this 
problem, and does so efficiently. Standard approaches, such as the popular Gauss-Newton and 
Levenberg-Marquardt algorithms (more details provided in Section 3.3.5) are able to implement IRLS. 
Many statistical software packages have GLM built in and automatically produce the regression results 
and relevant diagnostics. These results are often displayed in a way analogous to the outputs of OLS. To 
run the analysis, it is required to enter the data along with the desired link function and distributional 
assumption. 

A.4.4.4 GLM Example 
Consider sample data with one independent variable 𝑘𝐴𝐶𝑔ℎ𝐴 and dependent variable 𝐶𝐶𝑠𝐴. After viewing 
a scatter Plot of the data, Figure 85, a Power Model, 𝒚 = 𝛽0𝒙𝛽1 + 𝜺, is fit to the data by utilizing the 
GLM. This is done by log transforming 𝒙 = 𝑘𝐴𝐶𝑔ℎ𝐴 and then fitting the GLM with the log link function, 
𝑔(𝑎) = log (𝑎) and Normal (or Gaussian) error. Figure 86 displays the GLM regression analysis outputs 
on the transformed data.  

 
Figure 85: GLM Regression Model Scatter Plot 

 

Coefficients   

  Estimate 
Std. 
Error 

t-
value Pr(>|t|)   

(Intercept) 5.624 0.711 7.91 0.0000   

log(Density) 2.492 0.326 7.65 0.0001   
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Residual deviance: 333569671 on 8 degrees of freedom   

R-squared GLM: 
0.9379   

Adjusted R-squared GLM: 
0.9302 

            

Analysis of Deviance Table  

  

 

Df Deviance  

  Model 1 5.04E+09  

  Residuals 8 3.34E+08  

  Null (Total) 9 5.38E+09  

  Figure 86: GLM Regression Output 

The statistical package R generated these results and the format may vary in appearance by software 
package, though all should contain the same basic information. 75 Figure 85 is a common visual plotting 
of 𝐷𝐴𝑙𝑠𝐶𝐴𝑦 on the 𝑎-axis and 𝐶𝐶𝑠𝐴 on the 𝑦-axis, with the fit regression line going through the data. The 
appearance of results displayed in Figure 86 are now distinctly different to those returned by OLS, seen 
in Figure 25. The first table of coefficients is a standard output showing the estimated values for the 
regression equation, standard errors, and t-tests for significance. This is the model in the transform space, 
with only 𝐷𝐴𝑙𝑠𝐶𝐴𝑦 transformed. Recall that the model is solving for 𝐸[𝑦] = 𝐴𝑿𝑿 with 𝒙 being log 
transformed. Thus, the regression equation is, 

𝐶𝐶𝑠𝐴 = 𝐴5.624+2.492∙ln (𝐷𝑒𝑛𝑜𝑖𝑡𝑦) 

Algebraic manipulation of this form yields the power model, 

𝐶𝐶𝑠𝐴 = 𝐴5.624 ∙ 𝐷𝐴𝑙𝑠𝐶𝐴𝑦2.492 
= 277.051 ∙ 𝐷𝐴𝑙𝑠𝐶𝐴𝑦2.492 

Next, there are several regression statistics that are common such as the R-squared GLM and the residual 
deviances. GLM does not have sums of squares, but rather now has an analogous metric called deviances. 
Many metrics relevant in the linear model are no longer applicable in the non-linear setting. However, the 

                                                      

75 R Core Team, “R: A language and environment for statistical computing. R Foundation for Statistical 
Computing,” Vienna, Austria, 2013. URL http://www.R-project.org. 
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results are analogous in appearance and the approach for much of the analysis is the same as with OLS. 
The final table is the Analysis of Deviance table as shown in Figure 86, which is a standard view for 
significance and key diagnostic values in a regression model. Again, this table has significant deviation 
from OLS.  

A.4.4.5 Validate CER (Assumptions) 
Section 3.3.4 introduced the Generalized Linear Model (GLM), with more details covered in Appendix 
A.4.4 Generalized Linear Model (GLM). The assumptions and validation of the GLM are different than 
OLS because GLM is a method of maximum likelihood, not of least squares. However, the same basic 
principles are required from the data. The model statement explicitly states the assumptions of the 
analysis. Recalling Section 3.3.4, the GLM model is, 

𝐸[𝒚] = 𝑔−1(𝑿𝑿) + 𝜺 where 𝜺 ~ 𝐸𝑎𝐴 𝐹𝑎𝑆𝐶𝑙𝑦(𝜽) 
𝑉𝑎𝐴[𝒚] = ℎ(𝑔−1(𝑿𝑿)) 

A.4.4.6 Residuals 
The residual error is the difference between the actual value and the predicted value. This is the raw 
residual, and for the GLM is, 

𝒆𝑟𝑜𝑚 = 𝒚 − 𝑔−1(𝑿𝑿�) 

Similarly to OLS, these are not the correct residuals to use; standardization is required. This process is 
more complex for GLM, being dependent on the final iteration of the numerical algorithm. As a result, it 
is best to be aware of the standardization process as defined for OLS, but use the standardized residuals 
generated by the statistical software. 

A.4.4.6.1 Independence of Errors 
The assessment of the independence of errors assumption is largely the same as with OLS, but with the 
residual plots constructed on the GLM residuals. See Section 4.2.1.2 Independence of Errors. 

A.4.4.6.2 Variance Specification 
The assumption for GLM is not necessarily that the errors have constant variance, but that specification of 
the variance function, ℎ(𝑔−1(𝑿𝑿)) is correct. Verify this much in the same way as the homoscedasticity 
assumption; by examining the residual plot on the GLM residuals. See Section 4.2.1.3 Homoscedasticity. 
If violated, consider a new functional form for ℎ. 

A.4.4.6.3 Distributional Assumption 
The assumption for the GLM model for any exponential family distribution, not necessarily normality. 
The software generates a similar Q-Q plot as before, but using the assumed distribution. Validate the plot 
in the same way as introduced in Section 4.2.1.4 Normality of Errors. 

A.4.4.6.4 Linearity in the Parameter Space 
This step verifies both the linearity in the parameter space and the link function 𝑔−1(𝑿𝑿). Look for 
evidence that the model specification is correct. Much like OLS, use a scatter plot in the single variable 
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case; and a residual plot and predicted versus actual plot in the multiple predictor case. Look for the same 
symptoms as with OLS in Section 4.2.1.5 Linearity. 

A.4.5 Non-linear Least Squares (NLS) 

van der Vaart, A.W., Asymptotic Statistics, page 57. 

A.4.5.1 CO$TAT Application 
Generating the coefficients for NLS models can be accomplished via the non-linear analysis methods 
available within CO$TAT (part of the ACEIT software suite). Using CO$TAT, virtually any functional 
form can be defined and the software will calculate estimates of the parameters for that functional form. 
In addition to defining the functional form, options involving the optimization procedure used to find the 
parameters can be set. The following discussion on CO$TAT application heavily leverages 
methodologies found in A.4.8 Minimum-Unbiased-Percentage-Error (MUPE), but is applicable to fitting 
a NLS model in the more general sense as discussed in Section 3.3.5 Non-linear Least Squares (NLS). 

When using the Non Linear analyses built into CO$TAT to generate the parameters a number of option 
settings must be specified. Most of these options include details pertinent to the optimization routine used 
to generate the coefficient, but still others involve a description of the functional form for which the 
parameters are to be derived. A thorough explanation of these options and the necessary inputs from the 
analyst can be found in the CO$TAT help file. However, a brief discussion of some of the options is 
included here. 

Functional Form  

When entering the functional form, initial values for the parameters to be generated need to be included. 
As the function being minimized is non-linear, there is a potential for the generated parameters to be 
highly influenced by the choice of these initial values. With that in mind, the parameters should be 
initialized via a best guess and not simply the default value (usually 1). Values of a “best guess” for each 
parameter can be derived from inspection of scatter plots, similar CERs, or even input from subject matter 
experts. 

Error Metric 

In addition to the functional form, the error term for the model needs to be specified. The options for error 
term are Additive, Multiplicative, and Minimum Unbiased Percentage Error (MUPE). Further information 
on these error terms can be found in Book and Young’s 1997 paper “General-Error Regression for 
Deriving Cost-Estimating Relationships.” The choice of error term determines which error metric the 
algorithm tries to minimize. Choosing an additive error term generates coefficients that minimize the 
error function ∑ (𝜀𝑖)2𝑖=1,…,𝑛 .  

A multiplicative error term is defined by 𝜀𝑖 = 𝑦𝑖/𝐶(𝑎𝑖;𝑿). Thus, 𝐶(𝑎𝑖;𝑿) close to 𝑦𝑖 yields a residual 𝜀𝑖 
close to 1 rather than 0 in the case of additive errors. Choosing a multiplicative error term generates 
coefficients that minimize the squared deviation of the errors from 1. In other words, the error function 
minimized when the Multiplicative error is chosen is ∑ (𝜀𝑖 − 1)2𝑖=1,..,𝑛 . This method is known as 
minimum percentage error (MPE) regression. Book and Young’s paper notes that the estimates 
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minimizing this error function are positively biased. For this reason a third, unbiased, error function is 
available in CO$TAT. 

Due to the bias inherit in estimating parameters by minimizing the error function ∑ (𝜀𝑖 − 1)2𝑖=1,..,𝑛 , the 
method of minimum unbiased percentage error (MUPE) was developed. This method is a special case of 
iteratively reweighted least squares regression, and more information on the topic can be found in 
Appendix A.4.7.1 Iteratively Reweighted Least Squares (IRLS) and Appendix A.4.8 Minimum-Unbiased-
Percentage-Error (MUPE).  

Optimization Method 

There are a number of settings for the minimization algorithm. The available algorithms are Modified 
Marquardt (more formally known as the “Levenberg and Marquardt” method), Downhill Simplex, and the 
Gauss-Newton method. Unfortunately there is no single “best” method and none of these methods can 
guarantee a globally minimal solution to minimizing the chosen error metric. However, the Marquardt 
method is the default and it provides a good balance between computational efficiency (speed) and 
robustness (i.e., it is capable of finding global minimums despite poor parameter initialization). 

After selecting the optimization method, settings such as the maximum number of iterations, the 
convergence tolerance, and differential delta for approximation of derivatives need to be chosen. For 
convergence tolerance, a smaller value will calculate the minimum value to a higher degree of precision 
(i.e., more decimal places), however, it may take longer to do so. Similarly, a higher number of iterations 
will allow the algorithm to work towards convergence longer (which in turn provides more accuracy) but 
will require more time to do so. Lastly, the delta for approximating derivatives directs the algorithm 
towards a minimum more precisely, but does so with an increased probability of overlooking a globally 
minimal solution. In any case, the defaults for these settings are a good starting point and should only be 
manipulated if (a) the algorithm is not converging at all, or (b) the solutions to which the algorithms 
converged are unreasonable. 

The “best” algorithm to use and the “best” settings to employ are highly dependent upon not only the 
functional form and the number of parameters to be estimated, but also on the data set being analyzed. 
With this in mind, it is recommended that all three algorithms be used to generate parameters in the case 
that one method outperforms the others. Along those same lines, a variety of runs within each method 
using different initializations for each parameter will help reduce the chance of failing to identify a 
globally minimal solution. Lastly, if the algorithm is not converging in the allotted iterations, increases to 
the number of iterations, or decreases to the convergence tolerance might be in order. Regardless, the 
analyst should attempt multiple varied approaches for arriving at parameter estimates that minimize the 
specified error metric.  

A.4.5.2 Excel Application 
As an alternative to CO$TAT, the SOLVER function in Excel can be used to generate parameters for 
NLS. Using SOLVER to minimize the error metric can be a cumbersome task as it requires not only 
building the model in the Excel worksheet, but also selecting the parameters that will be used by the 
SOLVER routines. In statistical packages (including CO$TAT) the generation of statistics for NLS 
models is fully automated. Using SOLVER requires the analyst to perform all required calculations 
themselves. 
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While Excel provides many relevant functions and operations that aid in these calculations (e.g., 
“T.TEST”), building these calculations into an Excel worksheet are tedious and require a strong 
understanding of matrix algebra and statistics. For example, standard error estimates can be calculated by 
using the Jacobian (or Fisher’s Information) matrix at the last iteration of the algorithm. This information 
is lost with SOLVER and would require expert knowledge of the mathematics in order to duplicate. In 
general, a knowledge of statistics far greater than that provided in this guide would be required. 

Despite these drawbacks, most analysts are comfortable working in Excel. For this reason, SOLVER 
remains a viable option for those adventurous analysts seeking more control and transparency into 
parameter generation. However, its use should be cautioned, if not discouraged, since it is very easy to 
solve for parameter coefficients without fully understanding what is being done and without any of the 
proper precautions and 4.3 Model Diagnostics. 

A.4.6 Ridge Regression 

In matrix notation, useful for the multiple predictor (as well as the single predictor) case, 

𝑿� = (𝑿′𝑿 + 𝜆𝑰)−1𝑿′𝒚 

And, 

𝜎�2 =
𝒚′(𝐼 − 𝑿(𝑿′𝑿 + 𝜆𝑰)−1𝑿′)𝒚

𝑙 − (𝑘 + 1)
 

Hoerl, Arthur E., and Robert W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal 
Problems,” Technometrics, Vol 12, No 1, February 1970.  Authors from University of Delaware and I.E. 
du Pont de Nemours & Co.  Published by American Statistical Association and American Society for 
Quality.  Available at http://www.jstor.org/stable/1267351 or 
http://math.arizona.edu/math574m/Read/Ridge.pdf. 

A.4.7 Mathematical/Numerical Techniques 

A.4.7.1 Iteratively Reweighted Least Squares (IRLS) 
Iteratively Reweighted Least Squares is a mechanism for calculating parameter estimates for general error 
regression models. In each iteration step, the parameter estimates are updated based on minimizing the 
weighted squared error  

IRLS is a general technique, of which MUPE is a specific application. 

Daubechies, Ingrid, Ronald Devore, Massimo Fornasier, and C. Sinan Güntürk, “Iteratively Re-weighted 
Least Squares Minimization for Sparse Recovery.” Available at https://arvix.org/pdf/0807.0575.pdf. 

A.4.7.2 Maximum Likelihood Estimation (MLE) 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 615-630. 

http://www.jstor.org/stable/1267351
http://math.arizona.edu/math574m/Read/Ridge.pdf
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A.4.7.3 The Method of Lagrange Multipliers 

Suppose that f(x, y, z) and g(x, y, z) are differentiable and ∇g ≠ 0 when g(x, y, z) = 0. To find the local 
maximum and minimum values of f subject to the constraint g(x, y, z) = 0 (if these exist), find the values 
of x, y, z and λ that simultaneously satisfy the equations 

∇f = λ∇g and g(x, y, z) = 0. 

For functions of two independent variables, the condition is similar, but without the variable z. 

A.4.7.4 Bootstrap 

Hass, Joel, George Thomas, Jr., and Maurice D. Weir, University Calculus, page 769. 

Dunlop, Dorothy D. and Ajit C. Tamhane, Statistics and Data Analysis:  From Elementary to 
Intermediate, pages 597-601. 

A.4.8 Minimum-Unbiased-Percentage-Error (MUPE) 

Some key references on MUPE and other GERM techniques include: 

Hu, Dr. Shu-Ping, “The Minimum-Unbiased-Percentage-Error (MUPE) Method in CER Development,”  
3rd Joint Annual ISPA/SCEA International Conference, Vienna, VA, 12-15 June 2001. 

Hu, Dr. Shu-Ping Hu, and Alfred Smith, “Why ZMPE When You Can MUPE?,”  IPSA / SCEA Annual 
Conference and Training Workshop, New Orleans, LA, 12-15 June , 2007. 

General Error Regression Models (GERM) 

General Error Regression is a broad term used to describe any regression methodology involving 
functional forms that cannot be transformed into a linear functional form or one or more independent 
variables. In practice, estimating the coefficients of these models often requires the use of an optimization 
routine such as SOLVER in MS Excel.  

It is important to remember that the assumptions of general regression models are unlikely to have the 
same assumptions as OLS. Additionally, an alternative set of tests for statistical significance of the model 
or model parameters may need to be employed.  

Book, Stephen A., and Lao. N., “Minimum-Percentage-Error Regression under Zero-Bias Constraints,” 
Proceedings of the Fourth Annual U.S. Army Conference on Applied Statistics, 21-23 October 1998, U.S. 
Army Research Laboratory, Report No. ARL-SR-84, November 1999, pages 47-56. 

Book, Stephen A., and Philip H. Young, “General-Error Regression for Deriving Cost-Estimating 
Relationships,” The Journal of Cost Analysis, Vol 14, 1997 pp.1-28. 

Book, Stephen A., “Modern Techniques for Multiplicative-Error Regression,” IPSA / SCEA Annual 
Conference and Training Workshop, New Orleans, LA, 12-15 June , 2007. 

Zero-Percentage Bias (ZPB) Minimum Percentage Error (ZMPE) 
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While advocating MUPE over ZMPE, this paper has key information on the implementation and 
evaluation of both methods: 

Hu, Dr. Shu-Ping, and Alfred Smith, “Why ZMPE When You Can MUPE?,”  IPSA / SCEA Annual 
Conference and Training Workshop, New Orleans, LA, 12-15 June , 2007. 

A.4.8.1 GERM Significance 

Anderson, Tim, “A Distribution-Free Measure of the Significance of CER Regression Fit Parameters 
Established Using General Error Regression Methods,” IPSA / SCEA Professional Development and 
Training Workshop, St. Louis, MO, 2009. 

A.4.8.2 GERM Uncertainty (Bootstrapping) 

Book, Stephen A., “Prediction Bounds for General-Error-Regression Cost-Estimating Relationships,” 
Journal of Cost Analysis and Parametrics (JCAP), Vol 5 No 1, 2012. 

A.4.9 Advanced Regression Methodologies 

A.4.9.1 Restricted Least Squares 
Most often the exact relationship among the parameters, e.g., 𝛽1 + 𝛽2 = 1 or 𝛽1 + 𝛽2 = 1.25 is unknown. 
Instead, the desire is to verify certain prior information on the parameters. The interest is in testing a 
general hypothesis before running the restricted least squares. In OLS regression, the null hypothesis for 
the F-test is that none of the regression coefficients are statistically significant (i.e., all are equal to zero). 
This is shown compactly as: 

𝐻0:𝑿 = 𝟎 

For this more general problem of testing relationships, the null hypothesis generalizes as follows: 

𝐻0:𝑪𝑿 = 𝒂 

where C is used to denote a given matrix of r constraints, β is a vector of coefficients, and a is a vector 
specified by the hypothesis. The test statistic is then given by, 

𝐹 =

�𝑪𝑿�1 − 𝒂�
′[𝑪(𝑿1′ 𝑿1)−1𝑪′]−1�𝑪𝑿�1 − 𝒂�

𝐴�

𝑆𝑆𝐸
𝑙 − 𝑘 − 1�

 

It can be shown that the above equation follows an F distribution with r and n – k –1 degrees of freedom 
when H0 is true. Note that X1 is the centered design matrix (i.e., each independent variable has its mean 
subtracted from each observation), k is the number of independent variables, and n is the sample size. 

See the white paper “A Priori Knowledge in Linear Regression Analysis,” which draws on the below 
sources, for more details. 

Wooldridge, J. M.,  Introductory Econometrics: A Modern Approach (Third Edition), Thomson South-
Western, 2006. 
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Draper, Norman R. and Smith, Harry, Applied Regression Analysis (Third Edition), John Wiley & Sons, 
Inc., 1998, Section 9.5 “Restricted Least Squares” 

Jaggi, S. and Sivaramane, N., “Restrictions in Regression Model,” Indian Agriculture Statistics Research 
Institute, India. 

A.4.9.2 Principal Component Analysis 
Principal Component Analysis (PCA) is a regression method commonly used in the presence of high 
multicollinearity. PCA makes use of the eigenvalue decomposition of the 𝑿′𝑿 matrix to perform 
regression. Eigenvectors are defined as being orthogonal to one another. That is, there is no correlation 
between the eigenvectors, or principal components. Thus, PCA regresses on the linearly independent 
principal components. The regression may be analyzed and variable selection can be performed without 
inflated variance due to multicollinearity. The model can then be transformed back into the original 
variable space, or the full regression may be run from scratch using the down-selected variable set from 
the PCA. 

PCA as an estimator is highly related to Ridge Regression. In fact, Ridge Regression smoothly shrinks the 
estimates, while PCA proceeds more discretely in steps. The topic has been studied in detail and many 
statistical packages are capable of running PCA. 

Wold, Svante, Kim Esbensen, and Paul Geladi, “Principal Component Analysis,” Chemometrics and 
Intelligent Laboratory Systems, Elsevier Science Publishers B.V., Amsterdam, Vol 2, pages 37-52, 1987. 

Abdi, Herve and Lynne J. Williams, “Principal Component Analysis,” Wiley Interdisciplinary Reviews: 
Computational Statistics, 2010.  Available at 
https://pdfs.semanticscholar.org/53b9/966a0333c9c9198cdf03efc073e991647c12.pdf 

A.4.9.3 Mixed Models 
When a regression is performed, it is assumed that all independent variables are fixed and therefore the 
model has a single random error term. This is what is known as a fixed effects model. In certain 
situations, this assumption is inappropriate. The full dataset may be a hierarchical structure of different 
populations, defined by a categorical variable. Each of these population subsets of the data are in need of 
its own error term. Mixed Models allow for a second (or multiple) error terms to be integrated into the 
model. This can produce superior results, as only the overall error (SSE) is used for inferential purposes. 
A model with only random variables and no fixed variables is known as a random effects model. 

Setlman, Howard J., MD and PhD, Experimental Design and Analysis, Carnegie Mellon University, 
Department of Statistics & Data Science, Pittsburgh, PA, September 2015.  See Chapter 15. Available at 
http://www.stat.cmu.edu/_hseltman/309/Book/Book.pdf 

A.4.9.4 General Estimating Equations 
General Estimating Equations (GEE) are a generalization of the Generalized Linear Model (GLM) that 
allows for correlation between responses. Therefore, GEE is to GLM as Generalized Least Squares (GLS) 
is to OLS.  
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van der Vaart, A.W., Asymptotic Statistics, page 401. 

A.4.9.5 LASSO and the Elastic Net 
The Least Absolute Shrinkage and Selection Optimizer (LASSO) is a shrinkage estimator similar in 
concept to Ridge Regression. To explain the concept, the idea of a norm is introduced. Simply stated, a 
norm is a functional representation of size for a vector. The following are two common measures: 

𝐿1 = ‖𝒙‖1 
= � |𝑎𝑖|

𝑖

 
𝐿2 = ‖𝒙‖2 

= �𝑎𝑖2

𝑖

 

Ridge issues the constraint on the 𝐿2 norm of the coefficients in the model, ‖𝑿‖2 < 𝐶. For this reason, 
Ridge is also commonly referred to as 𝐿2 regularization. The result is the objective function, 

arg min
𝑿

(‖𝒚 − 𝑿𝑿‖2 + 𝜆‖𝑿‖2) 

LASSO issues the constraint on the 𝐿1 norm of the coefficients in the model, ‖𝑿‖1 < 𝐶. For this reason, 
LASSO is also commonly referred to as 𝐿1 regularization. The result is the objective function, 

arg min
𝑿

(‖𝒚 − 𝑿𝑿‖2 + 𝜆‖𝑿‖1) 

The absolute value function creates a point on the objective function where no derivative exists. As a 
result, LASSO has no closed-form solution, but there are efficient algorithms to solve the problem. 
LASSO has a convenient property that as the restriction parameter 𝜆 becomes larger (and therefore 𝐶 
becomes smaller), coefficient estimates move exactly to zero. Ridge regression simply shrinks the 
parameters, while LASSO performs automatic variable selection as well. 

While appealing, in the presence of severe multicollinearity Ridge regression outperforms LASSO. 
Another hybrid type model exists which shares properties of both the Ridge estimator and the LASSO 
estimator, called the elastic net. The elastic net has an objective function defined as, 

arg min
𝑿

(‖𝒚 − 𝑿𝑿‖2 + 𝜆1‖𝑿‖2 + 𝜆2‖𝑿‖1) 

The elastic net maintains properties of both Ridge regression and LASSO. The estimator performs well in 
the presence of multicollinearity, and also sends coefficients to be exactly equal to zero. 

Elastic net is popular in the setting where 𝑙 ≪ 𝐴, that is, where there are many more parameters of 
interest than observations. 

Tibshirani, Robert, "Regression Shrinkage and Selection via the Lasso," Journal of the Royal Statistical 
Society. Series B (Methodological), 58.1 (1996): 267-88, JSTOR Web, 07 Jan. 2015. 

A.5 Influence Diagram 
An influence diagram is a graphical depiction of a web of variables and their interrelationships. An arrow 
from one variable to another, labeled with either a plus sign or a minus sign, indicates positive or negative 
correlation, respectively. 
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Figure 87 illustrates a number of technical, schedule, and cost variables associated with Software 
Maintenance. There is a mixture of normalization steps (where factors color-coded in green may be 
applied) and hypothesized cost-driving relationships, indicated with a single-headed arrow and a plus or 
minus sign (positive or negative correlation, respectively). This latter component typifies an influence 
diagram, with additional discussion in Section 1.3 Cost Estimate Purpose and Scope. 

 
Figure 87: Example of Data Normalization and Hypothesized Relationships Between Variables 

Clemen, Robert T., and Terence Reily, Making Hard Decisions with Decision Tools (Third Edition), 
published by South-Western and Cengage Learning, Mason, OH, 2014.  See Chapter 3.  ISBN 978-0-538-
79757-3. 
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APPENDIX B MAXIMUM LIKELIHOOD ESTIMATION FOR 
REGRESSION OF LOG NORMAL ERROR (MRLN) SUMMARY 
Nonlinear equations are commonly used in CERs for government projects76. Three primary methods 
commonly used in the cost estimating community for calculating nonlinear CERs from historical data are 
log-transformed ordinary least squares (LOLS), iteratively reweighted least squares/minimum unbiased 
percentage error (IRLS/MUPE), and minimum percent error with zero percent bias (ZMPE). Of these 
three, LOLS is the oldest, primarily because it is not computationally intensive. Indeed, the parameters 
can be calculated using a hand calculator. 

The pedigree and simplicity of LOLS have led to the perception that this method is antiquated, and should 
be replaced by more modern, computationally intensive methods such as IRLS/MUPE or ZMPE. In log-
transforming the data we are estimating “log-dollars.” The transformed estimate is unbiased in log-space, 
but is biased once we transform the equation back to unit space. LOLS is estimating the median of a 
lognormal which is less than the mean, so LOLS is a biased estimator of the mean. The bias is low, so if 
we are trying to estimate the mean, LOLS will underestimate that value. The ZMPE method was 
developed as an alternative to LOLS.  

There is strong evidence for why CER residuals should be lognormally distributed, both theoretical and 
empirical. Changes in costs over time are proportional to prior costs. This makes sense. Cost is more 
likely to increase than decrease over time, as evidenced by numerous studies on cost growth that show 
that over 80% of government projects experience cost growth, and on average increase by over 50%. 
Thus when we talk about cost changes, we almost always mean cost increases. Cost increases often do not 
result in funding increases in the short term due to funding constraints. Thus cost increases will result in 
longer schedules. Longer schedules imply a longer period in which the personnel devoted to a project will 
charge to that particular project. Larger projects have more personnel assigned to a project, meaning that 
increases in cost will result in a proportional increase in cost. What we have described is a multiplicative 
Central Limit Theorem for cost risk meaning that cost risk is approximately lognormally distributed. 

The lognormal is widely used to model risk in other industries, such as health care and property 
insurance. 

Each of the methods in wide use today – LOLS, ZMPE, and IRLS/MUPE – have a connection to 
maximum likelihood estimation. For the case of lognormally distributed residuals, LOLS is an optimal 
method for estimating the median.  

Since there is strong evidence that CER residuals are lognormally distributed, and there are concerns with 
LOLS, we propose the use of maximum likelihood on the non-transformed equation to circumvent these 
issues. This method, which we term maximum likelihood estimation for regression of lognormal error 

                                                      

76 This appendix is a summary of the following paper: Smart, Christian, PhD,“Cutting the Gordian Knot: Maximum 
Likelihood Estimation of Untransformed Lognormal Error”, Director, Cost Estimating and Analysis Missile Defense 
Agency. 
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(“MRLN”), is a direct and simple approach. It avoids the trouble of having to transform the data, and then 
retransform one of the coefficients, and eliminates the concerns about LOLS. 

For MRLN, we are using the power equation, with cost as a function of one or more parameters: 

𝒀 = 𝑿𝟎𝑿𝟏
𝑿𝟏 …𝑿𝒑

𝑿𝒑 

The mean of a lognormal density function is 

𝒆𝝁+
𝜽
𝟐 

To estimate the mean directly, for the ith observation, we set  

𝒆𝝁𝒊+
𝜽
𝟐 = 𝑿𝟎𝑿𝒊𝟏

𝑿𝟏 …𝑿𝒊𝒑
𝑿𝒑 

Taking log transformation of both sides of the above equation, we find 

𝝁𝒊 +
𝜽
𝟐

= 𝒍𝒏𝑿𝟎 + 𝑿𝟏𝒍𝒏𝑿𝒊𝟏 + ⋯+ 𝑿𝒑𝒍𝒏𝑿𝒊𝒑 

Therefore,  

𝝁𝒊 = 𝒍𝒏𝑿𝟎 + 𝑿𝟏𝒍𝒏𝑿𝒊𝟏 + ⋯+ 𝑿𝒑𝒍𝒏𝑿𝒊𝒑 −
𝜽
𝟐

= 𝒍𝒏𝑿𝟎 + �𝑿𝒊𝒍𝒏𝑿𝒊𝒑 −
𝒑

𝒂=𝟏

𝜽
𝟐

 

Recall that the likelihood for a lognormal is given by 

𝑳(𝝁,𝜽) = �
𝟏

𝒚𝒊√𝟐𝝅𝜽
𝒆−

(𝒍𝒏𝒚𝒊−𝝁𝒊)𝟐
𝟐𝜽

𝒏

𝒊=𝟏

 

For n observations, the log-likelihood is thus (ignoring constants) 

𝒍(𝝁,𝜽) = −
𝟏
𝟐𝜽

�(𝒍𝒏𝒚𝒊 − 𝝁𝒊)𝟐 −�𝒍𝒏𝒚𝒊 −
𝒏
𝟐
𝒍𝒏𝜽

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

We substitute for µ to obtain 

𝒍�𝑿𝟎,𝑿𝟏, … ,𝑿𝒑,𝜽� = −
𝟏
𝟐𝜽

��𝒍𝒏𝒚𝒊 − 𝒍𝒏𝑿𝟎 −�𝑿𝒊𝒍𝒏𝑿𝒊𝒑 +
𝒑

𝒂=𝟏

𝜽
𝟐
�

𝟐

−�𝒍𝒏𝒚𝒊 −
𝒏
𝟐
𝒍𝒏𝜽

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

Ignoring constants and rearranging we obtain  

�𝑿𝟎,𝑿𝟏, … ,𝑿𝒑,𝜽� = −
𝒏
𝟐
𝒍𝒏𝜽 −

𝟏
𝟐𝜽

��𝒍𝒏𝒚𝒊 − 𝒍𝒏𝑿𝟎 −�𝑿𝒂𝒍𝒏𝑿𝒊𝒂 +
𝜽
𝟐

𝒑

𝒂=𝟏

�

𝟐𝒏

𝒊=𝟏
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Taking partial derivatives with respect to the parameters, we obtain 

𝝏𝒍
𝝏𝜽

= −
𝒏
𝟐𝜽

−
𝒏
𝟖

+
∑ �𝒍𝒏𝒚𝒊 − 𝒍𝒏𝑿𝟎 − ∑ 𝑿𝒂𝒍𝒏𝑿𝒊𝒂

𝒑
𝒂=𝟏 �

𝟐
𝒏
𝒊=𝟏

𝟐𝜽𝟐
 

𝝏𝒍
𝝏𝑿𝟎

= −
∑ �𝒍𝒏𝒚𝒊 − 𝒍𝒏𝑿𝟎 − ∑ 𝑿𝒂𝒍𝒏𝑿𝒊𝒂

𝒑
𝒂=𝟏 �𝒏

𝒊=𝟏

𝑿𝟎𝜽
 

For k = 1,…,p,  

𝝏𝒍
𝝏𝑿𝒌

= −
∑ 𝒍𝒏𝑿𝒊𝒌 �𝒍𝒏𝒚𝒊 − 𝒍𝒏𝑿𝟎 − ∑ 𝑿𝒂𝒍𝒏𝑿𝒊𝒂

𝒑
𝒂=𝟏 �𝒏

𝒊=𝟏

𝜽
 

There won’t typically be a closed form solution for the roots of these equations (unlike LOLS), so we will 
need a numerical iterative routine to solve, such as the Newton-Raphson algorithm. The Newton-Raphson 
method was published in Joseph Raphson’s Analysis Aequationum Universalis in 1690. While tedious, 
the tools to calculate nonlinear least squares have existed before the development of the least squares 
method by Carl Gauss in the early 19th century. 

We can utilize Excel’s solver routine to minimize the negative of the log likelihood. We are maximizing a 
negative value, so instead we minimize the negative of this log-likelihood. That is we minimize: 

−𝒍�𝑿𝟎,𝑿𝟏, … ,𝑿𝒑,𝜽� =
𝒏
𝟐
𝒍𝒏𝜽 +

𝟏
𝟐𝜽

��𝒍𝒏𝒚𝒊 − 𝒍𝒏𝑿𝟎 −�𝑿𝒂𝒍𝒏𝑿𝒊𝒂 +
𝜽
𝟐

𝒑

𝒂=𝟏

�

𝟐𝒏

𝒊=𝟏

 

This is a single number, so we can use Solver to minimize this value. We have to allow the variance term 
and the parameter coefficients to vary in order to find this minimum value. One potential set of starting 
values is to use the average sample value of Y for β0, set the other β parameters to equal 0, and set θ = 1. 
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APPENDIX C CER DEVELOPMENT CHECKLIST 
The inspiration for this checklist came from the GAO Cost Estimating and Assessment Guide, GAO-09-
3SP, March 2009 and the FAA Guide to Conducting Business Case Cost Evaluations 08 June 2016. 

Step Item Complete 

1 Purpose of the estimate  

   Customer, scope, level of detail identified  

2 Ground Rules & Assumptions  

   Base year and life cycle identified  

   Program schedule developed  

   Other program assumptions documented  

3 Cost estimating plan  

   Team members and roles & responsibilities defined  

   Deliverables & dates specified  

   Resource requirements identified  

   Cost estimating checklist developed  

4 Program definition  

   Technical baseline defined  

   Life cycle support strategy developed  

   Acquisition strategy defined  

5 Cost element structure  

   Work Breakdown Structure (WBS)/Cost Element Structure (CES) identified  

   WBS/CES dictionary developed  

   Operational and engineering insight obtained  

   Estimating method options & data sources by WBS element defined  

6 Data collection and analysis  

   Data collected and validated  

   Data organized and normalized for statistical analysis  

   Univariate analysis on dependent and independent variables completed  

   Analysis to find candidate cost drivers consistent with SME advice completed  

7 Cost estimating relationship (CER) developed and validated  

8 CER cost risk & uncertainty defined   

9 CER documented  
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APPENDIX D CORRELATION CRITICAL VALUE TABLES 
 

Table 45: Pearson Product Moment Critical Values 
  Two-Tailed Probabilities 

 0.1000 0.0500 0.0100 0.001 

  One-Tailed Probabilities 

n 0.0500 0.0250 0.0125 0.005 

5 0.687 0.805 0.878 0.959 

6 0.608 0.729 0.811 0.917 

7 0.551 0.669 0.754 0.875 

8 0.507 0.621 0.707 0.834 

9 0.472 0.582 0.666 0.798 

10 0.443 0.549 0.632 0.765 

11 0.419 0.521 0.602 0.735 

12 0.398 0.497 0.576 0.708 

13 0.380 0.476 0.553 0.684 

14 0.365 0.458 0.532 0.661 

15 0.351 0.441 0.514 0.641 

16 0.338 0.426 0.497 0.623 

17 0.327 0.412 0.482 0.606 

18 0.317 0.400 0.468 0.590 

19 0.308 0.389 0.456 0.575 

20 0.299 0.378 0.444 0.561 

21 0.291 0.369 0.433 0.549 

22 0.284 0.360 0.423 0.537 

23 0.277 0.352 0.413 0.526 

24 0.271 0.344 0.404 0.515 

25 0.265 0.337 0.396 0.505 

26 0.260 0.330 0.388 0.496 

27 0.255 0.323 0.381 0.487 

28 0.250 0.317 0.374 0.479 

29 0.245 0.311 0.367 0.471 

30 0.241 0.306 0.361 0.463 

40 0.207 0.264 0.312 0.403 
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Table 46: Spearman’s Rho Critical Values 
  Two-Tailed Probabilities 

 0.1000 0.0500 0.0100 0.001 

  One-Tailed Probabilities 

n 0.0500 0.0250 0.0125 0.005 

5 0.800 0.900 1.000  

6 0.657 0.829 0.886 1.000 

7 0.571 0.714 0.786 0.929 

8 0.524 0.643 0.738 0.881 

9 0.483 0.600 0.700 0.833 

10 0.455 0.564 0.648 0.794 

11 0.427 0.536 0.618 0.755 

12 0.406 0.503 0.587 0.727 

13 0.385 0.484 0.560 0.703 

14 0.367 0.464 0.538 0.679 

15 0.354 0.446 0.521 0.654 

16 0.341 0.429 0.503 0.635 

17 0.328 0.414 0.488 0.618 

18 0.317 0.401 0.472 0.600 

19 0.309 0.391 0.460 0.584 

20 0.299 0.380 0.447 0.570 

21 0.292 0.370 0.436 0.556 

22 0.284 0.361 0.425 0.544 

23 0.278 0.353 0.416 0.532 

24 0.271 0.344 0.407 0.521 

25 0.265 0.337 0.398 0.511 

26 0.259 0.331 0.390 0.501 

27 0.255 0.324 0.383 0.492 

28 0.250 0.318 0.375 0.483 

29 0.245 0.312 0.368 0.475 

30 0.240 0.306 0.362 0.467 

40 0.207 0.264 0.313 0.405 
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APPENDIX F DATA SETS 
F.1 Electronics Example 

 
Cost Power Cost per Unit 

Power Aperture Power per Unit 
Aperture 

FFP (1) 
or 

Observation (FY16$K) (kW) ($M/kW) (cm^2) (kW/cm^2) T&M 
(0) 

1 390 10.0 39.0000 8.70 1.149 1 

2 200 5.0 40.0000 8.00 0.625 0 

3 240 5.2 46.1538 8.20 0.634 1 

4 300 7.0 42.8571 

  

0 

5 460 12.0 38.3333 9.00 1.333 1 

6 560 17.8 31.4607 9.50 1.874 0 

7 700 21.0 33.3333 9.20 2.283 0 

8 800 25.0 32.0000 9.70 2.577 1 

9 500 18.0 27.7778 

  

0 

 

F.2 Cost Improvement Curve Example 
Collected, Validated and Normalized Data Calculated From Normalized Data 

 

Lot Total 
Cost 

FY2016$K 

Lot 
QTY 

Low Rate 
Initial 

Production 

Ave Unit Price 
FY2016$K 

First 
Unit 

Last 
Unit 

Year LotTotCost Qty LRIP AUP First Last 

2004 18.182 8 1 2.273 1 8 

2005 24.975 20 1 1.249 9 28 

2006 52.003 35 1 1.486 29 63 

2007 37.751 29 1 1.302 64 92 

2008 40.240 35 1 1.150 93 127 

2009 34.302 35 0 0.980 128 162 

2010 27.763 29 0 0.957 163 191 

2011 37.289 36 0 1.036 192 227 

2012 35.329 38 0 0.930 228 265 

2013 36.291 38 0 0.955 266 303 

2014 42.899 43 0 0.998 304 346 

2015 18.955 18 0 1.053 347 364 
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F.3 Power Density Example 
Observation Density Cost ($K) 

1 2.8 11,966.0 

2 9.5 76,510.2 

3 9.3 75,640.6 

4 9.6 72,360.3 

5 8.0 42,867.6 

6 9.1 76,831.0 

7 7.6 38,128.9 

8 7.5 36,729.7 

9 6.0 24,990.0 

10 6.0 30,684.5 

 
 

F.4 Pseudo-Exact Prior Information Example 
Observation 𝒙1 𝒙2 𝒙3 𝒙4 𝒚 

1 98.29 39.64 367.77 4.46 2,483.19 

2 110.31 45.78 443.74 5.14 2,764.18 

3 98.64 48.34 410.80 3.86 2,554.84 

4 98.60 41.15 333.71 4.43 2,477.89 

5 93.86 48.94 365.18 5.25 2,410.59 

6 81.91 41.48 504.68 5.99 2,915.43 
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APPENDIX G ACRONYMS 
G.1 General 
Aper Aperture 
AV Air Vehicle 
BLUE Best Linear Unbiased Estimators 
BLS Bureau of Labor and Statistics 
CEBoK© Cost Estimating Body of Knowledge 
CER Cost Estimating Relationship 
CES Cost Element Structure 
cm Centimeter 
DAU Defense Acquisition University 
DF or df Degrees of Freedom 
DoDCAS Department of Defense Cost Analysis Symposium 
EDF Empirical Distribution Function 
EQQs Economic Order Quantities 
Fig. Figure 
hp Horsepower 
ICEAA International Cost Estimating and Analysis Association 
IMP/IMS  Integrated Master Plan / Schedule 
JA CSRUH Joint Agency Cost Schedule Risk and Uncertainty Handbook 
JCAP Journal of Cost Analysis and Parametrics 
kW Kilowatt 
lb Pounds 
LN Natural Logarithm 
Log Logarithm 
PM Project Management 
Pmf Probability Mass Function 
PoP Period of Performance 
SME Subject Matter Expert 
SS Sum of Squares 
WBS Work Breakdown Structure 
ZPB Zero-Percentage Bias 
 
 

G.2 Multicollinearity 
PPM Pearson Product-Moment Correlation 
VIFs Variance Inflation Factors (test for multicollinearity) 
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G.3 Cost Estimating and Regression Methods 
AUC Average Unit Cost 
AUPC Average Unit Procurement Cost 
CIC Cost Improvement Curve 
GERM General Error Regression Methods 
GLM Generalized Linear Model 
GLS Generalized Least Squares 
IRLS Iteratively Reweighted Least Squares 
LC Learning Curve 
LOLS Log Ordinary Least Squares 
MPE Minimum Percentage Error 
MRLN Maximum Likelihood Estimation for Regression of Log Normal error 
MUPE Minimum Unbiased Percentage Error 
NLS Non-linear Least Squares 
OLS Ordinary Least Squares 
SLR Simple Linear Regression 
MLR Multiple Linear Regression 
WLS Weighted Least Squares 
ZMPE Zero Percentage Bias Minimum Percentage Error 
 

G.4 Advanced Regression Methods 
GEE General Estimating Equations 
ICLS Inequality Constrained Least Squares 
LASSO Least Absolute Shrinkage and Selection Optimizer 
PCA Principal Component Analysis 
 

G.5 Influence Points 
Cook’s D Cook’s Distance 
DFFITS Difference in Fit Statistic 
DFBETAS A variation on DFFITS 
HIPS High Influence Points 
 

G.6 Regression Statistics 
%Error Percentage Error 
ANOVA Analysis of Variance 
CDF Cumulative Density Function 
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CI Confidence Interval 
MLE Maximum Likelihood 
MOE Margin of Error 
MS Mean Squares 
MSE Mean Squared Error 
PDF Probability Density Function 
PI Prediction Interval 
RMSE Root Mean Squared Error 
RSS Residual Sum of Squares 
SSE Sum of Squared Errors 
SST total sum of squares 
 

G.7 Assumption Tests 
AD Anderson-Darling 
BP Breusch-Pagan (test for heteroscedasticity of the errors) 
Chi-squared  Pearson Chi-squared 
DW Durbin-Watson (test for independence of errors) 
KS Kolmogorov-Smirnov 
P-P Probabilty-Probablilty (plot to check for normality of the errors) 
Q-Q Quantile-Quantile (plot to check for normality of the errors) 
SW Shapiro-Wilk 
 

G.8 Fit/Predictive Statistics  
AIC Akaike Information Criterion 
BIC Bayesian Information Criterion 
Cp Mallows statistic (estimate of the mean squared prediction error for the OLS model) 
CV Coefficient of Variation (standard deviation/mean) 
MAD Mean Absolute Deviation 
PRESS Predicted Residual Sum of Squares 

𝑅𝑟𝑟𝑗2  Coefficient of Determination Adjusted for Degrees of Freedom 

SE Standard Error 
SEE Standard Error of the Estimate 
SPE Standard Percent Error 
 

G.9 DoD Terminology 
AS  Acquisition Plan (AP) / Acquisition Strategy 
BY Base Year 
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CADE Cost Assessment Data Enterprise 
CADRe Cost Analysis Data Requirement (NASA) 
CARD Cost Analysis Requirements Description 
CAPE Cost Assessment and Program Evaluation 
CCDR Contractor Cost Data Report 
CCE DoD Component Cost Estimate 
CCP DoD Component cost position 
CDD  Capability Development Document 
CP Constant Prices 
CSDR  Cost and Software Data Reports (CSDR = CCDR + SRDR) 
CWIPT Cost Working Integrated Product Team 
CY Constant Year 
DoD Department of Defense 
EVM Earned Value Management 
FFP Firm Fixed Price 
FY Fiscal Year 
GFE Government Furnished Equipment 
IAT&C Integration Assembly Test and Checkout 
ICD Initial Capabilities Document 
ICE Independent Cost Estimate 
ILSP  Integrated Logistics Support Plan 
MIL Military 
O&S Operating and Support 
ONCE One NASA Cost Engineering 
POE Program Office Estimate 
SAR Selected Acquisition Report (total program cost, schedule, and performance) 
SEPM System Engineering and Project Management 
SRDR Software Resource Data Report 
SRU Shop Replaceable Units 
STD Standard 
T&M Time and Materials 
T1 Theoretical First Unit Cost 
TEMP  Test and Evaluation Management Plan 
TRA Technical Readiness Assessment 
TRA Technical Risk Assessment 
TY Then Year 
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G.10 Tools  
ACEIT Automated Cost Estimating Integrated Tools 
CO$TAT Cost Analysis Statistics Package (part of the ACEIT suite of tools) 
JMP Statistics package by the JMP business unit of SAS Institute 
MiniTab Minitab 
R The R Project for Statistical Computing 
STATA Data Analysis and Statistical Software 
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